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Abstract

Seasonal adjustment removes 80% of within-year variation in unemployment. Linking local

weather to unadjusted monthly unemployment rates at the U.S. county level from 1990 to

2019, we find that unemployment would have been 11% lower on average absent extreme

temperature days, whereas their effect on seasonally-adjusted series is largely obscured.

The effect primarily operates through fewer job openings and hiring, alongside higher

separations—especially layoffs—resulting in greater unemployment insurance recipiency

and a slacker labor market. We then quantify the nationwide implications of long-run

climate change: while milder winters have reduced unemployment, these gains are eroded

by accelerating summer unemployment.
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“Unemployment is like a headache or a high temperature—unpleasant and exhausting but not

carrying in itself any explanation of its cause.”

—William Henry Beveridge, Causes and Cures of Unemployment (1931)

1 Introduction

Since the Great Depression in the 1930s, unemployment has been a critical input to policy

debates (e.g., fiscal and monetary policy; minimum wage), consistently monitored as a “tem-

perature” of the economy (Beveridge (1931)). This centrality reflects its substantial real-world

consequences—disrupting consumption smoothing (Gruber (1997)), impairing mental health

(Eliason and Storrie (2009)), and even elevating risks of crimes (Raphael and Winter-Ebmer

(2001)) and suicides (Milner et al. (2013)). Our inquiry starts from a routinely overlooked

premise that joblessness is highly seasonal: the peak-to-trough of the recent seasonal compo-

nent of unemployment matches half of the seasonally adjusted (SA) spike in the Great Recession

(Figure 1a1). In non-recession years, seasonal unemployment accounts for nearly 80% of the

within-year variation in the non-seasonally adjusted (NSA) unemployment rate (Figure 1a2).

Despite strong policy interest in the real-time release and short-term forecasting of unem-

ployment rates, economists—who place considerable emphasis on underlying trends and cy-

cles—conventionally smooth out the series through seasonal adjustment (Stock and Watson

(1999); Hodrick and Prescott (1997)). In line with this tradition, little attention is paid to

the regularity and mechanisms of high-frequency, NSA unemployment dynamics. As a first

step toward uncovering the “black box”, this paper directly relates regional NSA unemploy-

ment rates to arguably the most prominent seasonal factor—temperature—which fluctuates

markedly across time and space. We then assess the long-run implications of climate change

for nationwide unemployment dynamics, given the accelerated warming since around 2000.

We begin by comparing seasonal changes in the unemployment rate in summer and winter

with their corresponding temperature exposures. Figure 1b plots nationwide experience of hot

days in second-third quarters (Q2–Q3) and cold days in previous fourth-first quarters (pre Q4–

Q1), respectively1, alongside the half-year change of NSA unemployment rates in 1950–2019.

Despite the limited sample of 70 years, we find statistically significantly positive slopes (t = 2).2

Guided by the historical associations, we hypothesize that the arrival of hot summers and

cold winters elevate unemployment rates. First, extreme temperature days would significantly

hurt labor efficiency (see a survey on Lai et al. (2023)), for example, by increasing fatigue,

absenteeism, operational errors, and workplace injury risk, and thereby, reducing labor demand.

1Exposure to hot and cold days in each county is averaged using contemporaneous county labor force weights.
2Including or excluding recession years does not significantly change the estimate.
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Figure 1: Nationwide Trend: Unemployment Dynamics in the U.S. (1950–2019)

(a) Seasonal vs. Seasonally-adjusted Unemployment Rate
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Second, temperature shocks also hamper production activities (Cachon et al. (2012); Chen and

Yang (2019)) through, for example, supply-chain delays, electricity shortages, and machine

failures. These channels operate through both fewer hiring and more separations.

To formally test this hypothesis, we build a new spatial panel data connecting plausibly-

random monthly-level exposure to binned temperature and NSA unemployment rates across

U.S. counties during 1990–2019, allowing for the standard identification under the two-way

fixed effects (see Dell et al. (2014)). Through year-month fixed effects, temperature impacts

are isolated from the nationwide business cycle and calendar effects (e.g., annual contracts and

school graduation). We find that 10 more extreme temperature days per month (hot days over

75◦F or cold days below 50◦F) increase the unemployment rate by 0.2–0.3 percentage points.

The results are robust to reasonable combinations of fixed effects and to the inclusion of addi-

tional weather variables (e.g., rainfall, snowfall, and humidity). Notably, relationships with SA

unemployment rates are substantially muted, suggesting that climate-induced unemployment

is predominantly concentrated in the often-overlooked seasonal component.

Equipped with the model, we then turn to assess the role of extreme temperatures and warm-

ing since around 1980. The back-of-the-envelope calculation corroborates that temperature is

a non-negligible driver of unemployment: absent extreme temperature days, the average NSA

unemployment rate over 2000–2019 would have been 11.4% lower, whereas the impact on the

seasonally adjusted series is 0.42%. The impacts are largely driven by hot summer days, which

are more prevalent in Southern states. Alongside global warming, we document that the volatil-

ity of seasonal unemployment has steadily declined (Figure 1a). By comparing the pre-warming

decades (1950–1979) with the new century (2000–2019), we estimate that warming tempera-

tures account for 5.6% of the reduction in the variance of NSA unemployment rates. This is

due to milder winters that lower winter unemployment peaks, combined with harsher summers

that elevate the summer unemployment floor at an accelerating pace.

To unpack the underlying mechanisms and inform the policy responses, we provide three com-

plementary analyses. First, tracking the quarterly job flows at county-by-industry level during

2000–2019, we find that exposure to hot and cold days reduces job creation and suppresses the

labor market dynamism. Hot days slightly increase job destruction, while cold days mitigate

it. Second, investigating state-level quarterly worker-flows, we also find that hot days slacken

the labor market primarily by reducing hiring through fewer job openings, and secondarily by

raising separations—especially layoffs. Third, we find that statewide unemployment insurance

receipt—largely triggered by involuntary job loss—is also shaped by extreme temperature, re-

inforcing the contraction in labor demand documented in the first two results. Looking ahead,

projected temperature warming (IPCC (2023)) is expected to intensify fiscal burdens through

greater summer unemployment.
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Related Literature. Connecting unemployment with climate variables, this paper contributes

to the intersections of macroeconomics, labor economics and climate science. First, the pa-

per proposes climate change as a novel determinant of unemployment dynamics. Economists

conventionally analyze unemployment as a consequence of spatial exposure to trade shocks

(Autor et al. (2013); Kim and Vogel (2021)), tariffs (Furceri et al. (2018)), industrial robots

(Acemoglu and Restrepo (2020)), mass layoffs (Gathmann et al. (2020); Black et al. (2005)),

and UI regime (Chodorow-Reich et al. (2019); Rujiwattanapong (2025)). Our paper is the first

to empirically associate regional unemployment with climatic temperature, varying across both

time and space.3 Importantly, our climate impacts are not captured in seasonally-adjusted or

annualized data, the basis of nearly all prior studies. We provide a deeper understanding of

real-time unemployment rates—headline indicators of macroeconomic climates—by revealing

their hidden sensitivity to contemporaneous temperature exposure.

Second, this paper adds to the small body of research uncovering seasonality of the macroe-

conomy (Barsky and Miron (1989); Beaulieu and Miron (1992)) and employment (Coglianese

and Price (2025); Price and Wasserman (2024); Geremew and Gourio (2018)). A unified theme

of the literature is that routinely smoothed away seasonal statistics has a substantial real-world

implication. None of these analyzed unemployment. Despite the conventional view that un-

employment seasonality is a stable, recurring cycle that can be smoothed out, we find that

it is time-varying and generally shrinking, partly driven by climate change. In parallel with

the stability of the SA unemployment rate during Great Moderation after 1984 (see Gaĺı and

Gambetti (2009)), our finding suggests that the de facto moderation in the NSA unemployment

rate was even greater.

Third, the proposed mechanism of climate-induced unemployment builds on empirical works

on productivity losses at the factory level (Chen and Yang (2019); Zhang et al. (2018); Cachon

et al. (2012); Somanathan et al. (2021)) and the worker level (efficiency damage for Borg et al.

(2021); Hancock et al. (2007)); shrinking hours of work for Ireland et al. (2025); Graff Zivin and

Neidell (2014)). We approach unemployment dynamics through employment flows, primarily

characterized by suppressed hiring at the state level. Our flow-based evidence complements

the burgeoning works on adaptations to climate change: employee reallocation by multi-county

firms (Acharya et al. (2023)), exits of small factories (Ponticelli et al. (2023)), capital deepening

and technological change (Xiao (2021); Ma (2025)). While consistent with this micro-level

evidence on firms, factories, and workers, our paper highlights regional labor demand dynamics

with nationwide implications for unemployment.4

3A notable recent exception, Kim et al. (2025) analyze the effects of temperature shocks on nationwide
macroeconomic statistics, including output, prices and unemployment rates. They employ a time-series method
to leverage intertemporal variation of the macro climate shocks, while we also exploit their intranational spatial
variation at the county level.

4The paper also belongs to the growing literature on climate and the macroeconomic outcomes (see Bilal
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The remainder of the paper is structured as follows. Section 2 describes the key data sources

and our econometric framework. Section 3 presents the baseline results and robustness checks.

Then, we evaluate the role of climate change in the magnitude and dynamics of unemployment.

Section 4 explores the mechanism through employment flows. Section 5 discusses an implication

for unemployment insurance recipiency. Section 6 concludes. The Appendix reports additional

figures and tables (labeled with “A”).

2 Data and Model

2.1 Weather and Climate

We construct daily temperature at the county level, using weather station data from the

Global Historical Climatology Network Daily (GHCN-Daily), managed by the National Climatic

Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). The

GHCN-Daily database provides daily climate statistics, such as maximum and minimum daily

temperature, precipitation, and snowfall, from approximately 15,000 weather stations across

the U.S., offering a comprehensive climatic dataset with the highest frequency, resolution, and

quality since the 19th century. We use the data from stations with complete annual records

during 1950–2019.

County-level temperature. To aggregate station-level data to the county level, we employ an

inverse-distance weighting method (e.g., Barreca et al. (2016)). Specifically, we aggregate the

daily records of the three nearest weather stations to the county’s population centroid, weighted

by the inverse square of the distance from the centroid. Then, we construct an average daytime

temperature for each day d as a weighted average of the maximum and minimum temperature,

i.e., Td = ωTmax
d +(1−ω)Tmin

d . Instead of using ω = 0.5 as is common in the climate literature,

we assign ω = 0.75 in light of our focus on regular working hours, 8 am to 6 pm.5 We find

a substantial geographical variation of exposure to climate change across counties even within

states (Figure A-2).

and Stock (2025) for a survey) such as growth (Dell et al., 2012; Colacito et al., 2019), income (Deryugina and
Hsiang (2014)), labor share (Qiu and Yoshida (2024)) and labor force participation (Yoshida (2025)).

5This calculation assumes a linear fluctuation of temperature between its minimum at 6 am and its maximum
at 1:30 pm.
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2.2 Unemployment

Unemployment rate. We construct unemployment rates from both NSA and SA civilian un-

employment and employment (ages 16 and above) at the county-year-month level in the U.S.

mainland during 1990–2019 from the Local Area Unemployment Statistics (LAUS). The dataset

is produced by the Bureau of Labor Statistics (BLS) from the Current Population Survey, the

Current Employment Statistics (CES) survey, and state unemployment insurance (UI) systems.

Employment flows. We draw on local employment flows—job flows (creation and destruc-

tion) and worker flows (separations and hires)—at the county-industry-year-quarter level for

19 NAICS private industries over 1993–2019, using data from the Quarterly Workforce Indica-

tors (QWI). This dataset is constructed from the Longitudinal Employer-Houshold Dynamics

(LEHD) by the Census Bureau—employer-employee linked massive longitudinal microdata cov-

ering over 95% of U.S. private sector jobs.

Worker flows. We obtain worker flows of separations (divided into layoffs and quits) and hires

as well as job openings at the state-year-month level from December 2000 to December 2019 for

48 states plus D.C. from the Job Openings and Labor Turnover Survey (JOLTS). This dataset

is constructed from a monthly survey of approximately 21,000 U.S. business establishments in

all nonagricultural industries, collected by the BLS.

2.3 Seasonal Regularity in Unemployment

We codify the observed dynamic and spatial patterns of seasonal unemployment into three

stylized facts (Facts 1–3), which we then empirically relate to extreme temperature.

Fact 1: Unemployment rate spikes in the summer (Q3) and winter (Q1) quarters. Figure

2a1 illustrates the nationwide changes in the seasonal unemployment rate before and after

the recessionary peak in 1984, computed as the difference between the BLS-based NSA and

SA unemployment rates. Traditionally, the nationwide unemployment rate spikes in January

from the previous December, presumably reflecting the end of annual contracts in fiscal years

and holiday shopping seasons. A notable pattern is the spike in unemployment from May to

June, the onset of summer, coinciding with graduation and summer breaks when high school

or college students search for jobs. Especially since 1984, the June spike has been followed by

a more gradual decline, with unemployment remaining elevated through Q3. Taken together,

the unemployment rate surges in winter (Q1) and summer (Q3) quarters, when temperatures

hit their lowest and highest.
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Fact 2: Hotter (colder) states experience a larger increase in summer (winter) unemploy-

ment. Taking a spatial perspective, Figure 2c examines the climate-unemployment dynamics

across states, split between summer and winter over 1990–2019. In the summer, hotter states

(e.g., Florida, Arizona, and Texas) experienced a larger increase (or a smaller decrease) in

unemployment rates relative to colder states (e.g., Minnesota, Michigan, and Wisconsin). In

contrast, in the winter, colder states experienced a larger increase in unemployment rates rel-

ative to hotter states.6 Both relationships are consistent with our proposition that seasonal

climate shocks raise regional unemployment rates.

Fact 3: Unemployment seasonality has been shrinking. The magnitude of the seasonal com-

ponent of the monthly unemployment rate consistently shrinks over time (Figure 1a). Within

a year, Figure 2a shows that this declining seasonal volatility largely reflects a steady fall in

Q1 unemployment (Jan–Mar) and a gradual rise in Q3 unemployment (Jul–Sep). This pat-

tern of unemployment dynamics aligns well with climate change, marked by fewer cold days

in Q1 and more hot days in Q3 (Figure 2b). Intriguingly, we find that the shrinkage of un-

employment seasonality is observed not only in the U.S., but also in Canada, Germany, and,

more broadly, across OECD countries (Figure A-4), spanning diverse institutional settings and

climatic conditions—suggestive of a role for global warming. Overall, Figure 2 summarizes

dynamic and spatial variation as sources of identification, which we formally implement below.7

2.4 Model

To test climate-induced unemployment, we build and estimate the baseline model that relates

county-level monthly NSA unemployment rates to climate exposure, with two-way fixed effects.

Specifically, for county l in year t ∈ {1990, · · · , 2019} and month m ∈ {1, · · · , 12}, we run:

UnempRatel,t,m =
∑

b∈{1,··· ,10,13,··· ,16}

βbdaysbl,t,m +ΛCl,t,m + δl + δt,m + εl,t,m, (1)

where UnempRatel,t,m is county l’s unemployment rate in year t and month m. daysbl,t,m is a

number of days falling into 5◦F temperature bin indexed by b ∈ {1, · · · , 10, 13, · · · , 16} in month

m, where the missing 11th and 12th bins (65–75◦F) are set as benchmarks.8 We also control for

6A positive link is also observed across commuting zones (Figure A-5).
7We find that the seasonality of employment-to-population ratio mirrors Fact1-3 (Figure A-6).
8We use 65–75°F as the benchmark temperature range for three reasons. First, OSHA recommends tem-

perature control in the range of 68-76◦F for indoor workplaces. Second, Chen and Yang (2019) find that
establishment-level industrial output declines when the daily temperature exceeds 24◦C (75.2◦F). Finally, a
clear jump in the estimated temperature effect at 75◦F ensures that temperatures above this threshold are
sufficiently “hot” relative to the benchmark.
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Figure 2: Climate Change and Seasonal Unemployment in the U.S.
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rainy days in additional climate covariates Cl,t,m and county fixed effects δl. The year-month

fixed effects δt,m capture any time-varying nationwide shocks (e.g., business cycles, technological

change, and free trade) as well as monthly calendar effects (e.g., fiscal-year contracts). The

regression is weighted by the logarithm of labor force of each county and standard errors are

clustered at the commuting-zone (i.e., superset of neighboring counties) level.9 Presuming that

temperature shocks are unconditionally random, βb captures the effect of ten days in each bin,

relative to ten benchmark-temperature days of 65–75◦F. While we rely on the simplest one-

month treatment window to estimate contemporaneous temperature effects, we also consider

an augmented model that incorporates lagged effects from prior months, thereby quantifying

cumulative impacts over time (Section 3.2).

3 Results

Semi-parametric bin models. Figure 3a1 illustrates our baseline results. The red line of the

top figure plots the U-shaped response of the NSA unemployment rate to each temperature bin

of 10 days with 95% confidence intervals. On average, a 10-day increase of hot days (≥75◦F)

or cold days (<50◦F) per month increases the unemployment rate by 0.2–0.3 percentage points

(pp).10 Importantly, we find largely muted effects on the commonly-used SA unemployment

rate, suggesting that our estimates predominantly capture within-year seasonal impacts (Figure

3a2). Additionally, consistent with the U-shaped estimates, we also find that the effects are

amplified in historically hot (e.g., Southeast) and cold (e.g., Northeast) regions that are more

exposed to extreme temperature (Table A-6).

Figure 3b analyzes the responses of unemployment, employment, and out of the labor force

separately, expressed as ratios to the population.11 The decline in employment is roughly twice

as large as the increase in unemployment, implying that about half of employment separations

translate into exits from the labor force—likely reflecting quits by employed workers (including

temporary seasonal workers) as well as labor force withdrawal among discouraged unemployed

workers.

9We find that the estimates are robust against alternative clustering options (Figure A-9).
10We find that precipitation or snowfall significantly raises unemployment, likely reflecting disruptions to

business operations (Table A-3).
11Because the county-level monthly data on the out-of-labor-force population are unavailable, we impute the

series as the difference between the annualized population (ages 15+) from the SEER data and the monthly
labor force (ages 16+) from the BLS.
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Figure 3: Temperature Shocks and Unemployment
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The regressions are weighted by the log of labor force. Dotted lines are 95% confidence intervals,
constructed from standard errors clustered by commuting zone. Bins with 65–75◦F are set as the
benchmark. An unemployment rate is computed using county-level NSA and SA monthly unemploy-
ment and employment series (ages 16+) from the BLS. County population data (ages 15+) comes from
the SEER program of the National Cancer Institute. The out-of-labor-force population is imputed as
the difference between the population and the labor force.
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3.1 Robustness

Fixed effects. The baseline model (Eq.(1)) adopts the standard two-way (county and year-

month) fixed effects. The granularity of the data permits an inclusion of county-by-year fixed

effects δl,t rather than county fixed effects δl. The temperature estimates remain largely un-

changed, suggesting that they primarily reflect within-year seasonal impacts—consistent with

the very modest estimates when the SA unemployment rate is used (Figure 3a2). Controlling for

state-by-year fixed effects produces similar temperature estimates, suggesting that time-varying

institutional factors (e.g., UI, minimum wage, and unionization) do not critically confound the

estimates. We try reasonable alternative combinations of fixed effects, but the estimates remain

broadly stable (Figure A-7; Table A-2).

Additional weather variables. The baseline model (Eq.(1)) includes monthly rainy days in

additional weather variables, Cl,t,m. We consider a reasonable alternative set of weather vari-

ables consisting of rainfall, snowfall, and humidity, but the temperature estimates are broadly

preserved. Replacing hot days by“uncomfortable days”, defined as days with a heat index above

80◦F that interact temperature with relative humidity, yields larger and more precise estimates,

consistent with the mechanism of declining labor efficiency due to thermal stress (Figure A-8;

Table A-3).

Two-tailed models under alternative temperature cutoffs. To ensure tractability in testing

the mechanism and to retain sufficient precision for impact quantification, we introduce a sim-

plified two-tailed models:12

UnempRatel,t,m = βhhdl,t,m + βccdl,t,m +ΛCl,t,m + δl + δt,m + εl,t,m, (2)

where hdl,t,m and cdl,t,m denote hot and cold days, defined as days with average working-hour

temperatures above 75◦F and below 50◦F, respectively, guided by the U-shaped estimates in

Figure 3a1.13 We obtain βh = 0.240 (s.e. 0.026) and βc = 0.248 (s.e. 0.026), both precisely esti-

mated. Importantly, the coefficients remain statistically significant across alternative reasonable

temperature cutoffs (Table A-1).

Two-tailed models with lagged weather variables. As unemployment is potentially affected

by climate shocks from previous months, we examine cumulative lag specifications from 0 to M

12A two-tailed model has been a standard, tractable complement to binned models in the climate literature,
as in Barreca et al. (2016) and Somanathan et al. (2021).

13Note that these cutoffs are constructed based on the average temperature during working hours, with the
corresponding maxima and minima are higher and lower, respectively.
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months (M ∈ {0, · · · , 5}) and find significant lagged estimates, indicating cumulative nature of

temperature effects operating within a seasonal time window (Table A-4). This finding cautions

against the widely used practice of moving-average smoothing (e.g., over a quarter or half year)

for seasonal adjustment of unemployment rates, as lagged effects of past climate shocks remain

embedded in the smoothed series (Table A-5).

3.2 Quantitative Assessment

Climate-induced unemployment. Having established the link between temperature and unem-

ployment, we quantitatively assess how exposure to regional extreme temperatures contributes

to nationwide non-seasonally-adjusted (NSA) unemployment over the study period, 1990–2019.

Because current unemployment may reflect climate shocks from preceding months through fric-

tions in labor demand adjustment, we employ estimates from a two-tailed lagged model with

a quarterly time window—corresponding to lags of up to two months—for hot, cold, and rainy

days (see Column 3 of Table A-4, introduced above at Section 3.1).14

We construct the counterfactual scenario in which all the days fell into normal (non-hot, non-

cold) days, and measure the resulting gap between the simulated and empirical unemployment

series. Figure 4a illustrates the simulated impacts of extreme temperature days over 1990–2019.

Reflecting larger and more persistent lagged effects of hot days (Table A-4), the aggregate

impact is primarily driven by the surge in summer unemployment. We also find a pronounced

regional heterogeneity: Southern states experience larger impacts from hot days in summer,

while Northern states face larger impacts from cold days in winter.15

The back-of-the-envelope calculation suggests that temperature is a non-negligible driver of

unemployment: absent extreme temperature days, the NSA unemployment rate during non-

recessionary periods over 2000–2019 would have been 11.4% lower, while the corresponding

reduction in the SA series is only 0.42%.16 Under a quarterly treatment window, the magnitude

remains robust, ranging from 10 to 13%, across protocols (Figure A-11). The contribution of

extreme temperatures exhibits substantial seasonal dispersion, ranging from 7.6% in May to

17.8% in September. Because our model does not explicitly incorporate natural disasters (e.g.,

14Because simulated temperature impacts expand with wider treatment windows—albeit with less precise
estimates at longer lags (Table A-4)—we view this exercise as providing a reasonable lower bound on extreme
temperature effects.

15Southern states comprise 18 states across the Southeast, South, Southwest and West, accounting for nearly
half of the nationwide labor force over 2000–2019.

16Because baseline cold-day effects on the SA series cannot be statistically distinguished from zero, we only
include hot-day effects (Table A-1).
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hurricanes, arctic blasts, wildfires)17, which are partially captured by precipitation measures,18

we regard our estimates as a reasonable lower bound on climate-induced unemployment.

Climate change and unemployment dynamics. Given the tangible role of extreme tempera-

tures in regional unemployment, we next address our central question: how the acceleration of

climate change since 2000 has reshaped nationwide unemployment. Using the two-tailed lagged

model with a quarterly treatment window (Column 3 of Table A-4), we simulate the counter-

factual climate impacts across decades—1980s, 1990s, 2000s, 2010s—by keeping the weather

exposure fixed at its pre-warming (1950–1979) average to gauge the impacts of climate change.

Figure 4b illustrates the results. We find that a rising frequency of hot days elevates un-

employment throughout the year, with the strongest effects in the summer quarter (Q3). By

contrast, fewer cold days modestly reduce unemployment. Relative to the 1950s–1970s bench-

mark, fewer cold days over 2000–2019 reduce winter (Q1) unemployment by 0.022 pp. but more

hot days raise summer (Q3) unemployment by 0.044 pp—equivalent to about 36,000 fewer and

72,000 more unemployed workers, respectively, when evaluated using 2019 labor force levels.

As a consequence of this “horse race” between harsher summers and milder winters, the annual

net effect of climate change has turned positive: roughly 30,000 additional unemployed workers,

evaluated at 2019 (Figure A-12).

Guided by Figure 2, we hypothesize that harsher summers and milder winters may help ex-

plain the declining volatility in NSA unemployment by raising the floor and lowering the ceiling,

respectively. We then assess how much climate change accounts for the decline in monthly NSA

unemployment fluctuations. Running the same exercise, we compute that the climate change

since the 1950s–70s explains 5.6% of the shrinking variance of the NSA unemployment rate over

2000–2019 (see Figure A-11 for robustness).19

As Figure 4b illustrates, the unemployment-augmenting impacts of hot days accelerate over

time, whereas the unemployment-reducing effects from fewer cold days remain limited; by the

2010s, even in Q1, these benefits were nearly offset by hot days. Consistently, we find little

evidence of dynamic acclimatization (Table A-7). Looking ahead, projections of global warming

(IPCC (2023)) suggest that summer unemployment will continue to rise, potentially reversing

the long-run moderation in seasonality and amplifying unemployment volatility.20

17Natural disasters are known to trigger unemployment, as documented in labor market studies of hurricanes
(Groen and Polivka (2008); Belasen and Polachek (2008)) and tornadoes (Riesing (2018)).

18When aggregate nationwide, rainy days conditional on extreme temperature days consistently explains
roughly 6% of NSA unemployment rate.

19Several alternative mechanisms may contribute to the remaining decline in seasonal volatility—including
the growing non-seasonal service economy and the diffusion of air conditioning—but uncovering these channels
remains an open question.

20A pronounced spike in summer unemployment has already been observed in the UK in the new century
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Figure 4: Simulated Impacts on Unemployment

(a) Impacts of Extreme Temperatures on the Unemployment Rate (over 1990–2019)
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(b) Impacts of Climate Change since the 1950s–70s on the Unemployment Rate
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Notes: Simulations are based on a two-tailed model that includes hot days (≥75°F) and cold days
(<50°F) with lags of up to two months (Column 3 of Table A-4). An analogously lagged series of
rainy days is controlled for, along with county fixed effects and year-month fixed effects. Regressions
are weighted by the log of labor force. Panel (a): Monthly exposure to hot days and cold days over
2000–2019 is aggregated using a weighted sum with the vector of lagged coefficients. Southern states
include the Southeast (VA, NC, SC, GA, AL, FL), South (TX, LA, MS, AR, OK, KS), Southwest (AZ,
NM, UT, CO) and West (CA, NV). Northern states comprise the remaining contiguous U.S. states,
including D.C. Panel (b): Period-specific differences in average monthly exposure to hot and cold
days relative to 1950–1979 are aggregated using a weighted sum with the vector of lagged coefficients.
Decades are defined as 1980–1989 (1980s), 1990–1999 (1990s), 2000–2009 (2000s), and 2010–2019
(2010s).
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4 Mechanism

Conceptual framework. To illuminate the channels through which extreme temperatures

reshape unemployment dynamics, we outline a conceptual framework. First, on the firm

side, weather-sensitive technologies reduce labor efficiency—via fatigue (González-Alonso et al.

(1999)), operational errors (Mazloumi et al. (2014)), absenteeism (Somanathan et al. (2021)),

and workplace injuries (Park et al. (2021))—and reduce non-labor-related productivity by trig-

gering supply-chain delays (Cachon et al. (2012)), electricity shortages (Adhvaryu et al. (2020)),

and machine failures (Garimella and Hughes (2023)). These shocks directly lower labor demand,

manifested as fewer vacancy postings and higher layoffs. Second, on the worker side, climate

shocks increase thermal discomfort and reservation wages, leading to quits, a small portion of

which flow into unemployment (Elsby et al. (2011)). Third, at the labor market level, matching

probabilities decline as the market becomes slacker (i.e., vacancies fall relative to unemploy-

ment). We investigate these channels through the lens of employment flows below.

Employment flows within counties and sectors. To track climate-induced unemployment in-

flows and outflows, we examine the dynamics of employment flows. Using the QWI, we study

the responses of county-level quarterly job flows across eight sectors (agriculture, mining, con-

struction, manufacturing, transportation, retail, low-skilled service, and high-skilled service)

over 1993–2019. Building on the two-tailed specification, Eq.(2), we estimate the following

model for county l, sector i, year t, and quarter q ∈ {1, · · · , 4}:

∆ Ll,i,t,q

El,i,t,q

= βhhdl,t,q + βccdl,t,q +ΛCl,t,q + δl,i + δt,q + εl,i,t,q, (3)

where the outcome variable is an employment flow, ∆ Ll,i,t,q, relative to the start-of-quarter em-

ployment, El,i,t,q. hdl,t,q and cdl,t,q are hot and cold days per quarter in county l, respectively,

and the additional weather variable, Cl,t,q, includes rainy days per quarter. The regression is

weighted by log(El,i,t,q) and standard errors are clustered by state. Given the two-way fixed

effects (δl,i and δt,q), β
h and βc respectively captures the effects of hot and cold days on em-

ployment flows, relative to normal (non-hot, non-cold) days.

Table 1a reports the estimates. Column 1 shows that 10 hot days per quarter reduce employ-

ment growth by −0.381 percentage points (pp). Consistently, columns 2–3 show that hot days

significantly reduce job creation and increase job destruction; however, the contraction in job

creation (−0.353 pp) is an order of magnitude larger than the rise in job destruction (+0.027

(Figure A-4). A quantitative forecast of future unemployment is beyond the scope of this paper, as it requires
a number of assumptions regarding climatic projections, demographic trends and the stability of institutional
rules.
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Table 1: Extreme Temperature and Quarterly Labor Market Dynamics

(a) Employment Flows at the County-Sector Level (QWI, 1993–2019)

Dependent variables (percent of start-of-quarter employment (0–100 pp))

Emp. Flow Job Flow Worker Flow

Job Worker
∆Emp. Creation Destruction Turnover Hires Separations Turnover

(2) + (3) (5) + (6)
(1) (2) (3) (4) (5) (6) (7)

Descriptive statistics (0–100 pp; mean (sd))
2.33 6.35 4.02 10.37 23.2 20.86 44.06
(4.71) (5.02) (1.44) (5.69) (12.09) (9.45) (21.18)

10 hot days −0.381 −0.353 0.027 −0.326 −0.327 0.054 −0.272
per quarter (0.047) (0.047) (0.005) (0.047) (0.081) (0.045) (0.122)

10 cold days −0.049 −0.104 −0.056 −0.160 −0.423 −0.375 −0.798
per quarter (0.039) (0.039) (0.004) (0.039) (0.076) (0.047) (0.120)

county × sector FEs Yes Yes Yes Yes Yes Yes Yes
year × quarter FEs Yes Yes Yes Yes Yes Yes Yes

Adjusted R2 0.468 0.513 0.545 0.552 0.573 0.563 0.581

(b) Worker Flows and Matching within States (JOLTS, 2001–2019)

Dependent variables (percent of end-of-pre-quarter employment (0–100 pp))

Worker Flow Worker–Firm Matching

Separations Job Unemploy Market
Hires Total Layoffs Quits openings -ment Tightness

(5)/(6)

(1) (2) (3) (4) (5) (6) (7)

Descriptive statistics (0–100 pp; mean (sd))
10.62 10.46 4.11 5.61 9.54 6.54 1.75
(2.10) (1.86) (0.81) (1.31) (1.58) (1.38) (0.53)

10 hot day −0.214 0.132 0.076 0.058 −0.131 0.039 −0.054
per quarter (0.086) (0.034) (0.017) (0.021) (0.053) (0.021) (0.017)

10 cold days −0.101 −0.062 −0.005 −0.057 −0.031 0.061 −0.025
per quarter (0.071) (0.030) (0.015) (0.017) (0.036) (0.018) (0.011)

state FEs Yes Yes Yes Yes Yes Yes Yes
year × quarter FEs Yes Yes Yes Yes Yes Yes Yes

Adjusted R2 0.880 0.894 0.793 0.904 0.917 0.855 0.835

Notes: Panel (a) N = 451, 647. Unit of analysis: counties × sectors × years × quarters. Sectors consist
of agriculture, mining, construction, manufacturing, transportation, retail, low-skilled service, and high-skilled
service. Low-skill services include education, health, leisure and hospitality, and other services. High-skill
services include information, business services, finance, and utilities. Eq.(3) is estimated using hot days (≥75°F)
and cold days (<50°F). Rainy days per quarter are controlled for. The regressions are weighted by the log
of start-of-quarter employment; standard errors clustered by commuting zone. Panel (b) N = 3, 724. Unit of
analysis: states × years × quarters. Eq.(4) is estimated using hot days (≥75°F) and cold days (<50°F). Rainy
days per quarter are controlled for. The regressions are weighted by the log of end-of-pre-quarter employment;
standard errors are clustered by state.
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pp). By contrast, cold days suppress both job creation and destruction. On a net basis, hot

and cold days hurt job creation (column 2) and job turnover (column 4). Analogously, Columns

5–6 respectively indicate significantly reduced hires and weakly positive (though statistically in-

significant) changes in separations in response to hot days.21 These results suggest that reduced

job creation and hiring increase unemployment by dampening exits from unemployment.

Worker flows within states. We complement the analysis with worker flows obtained from

JOLTS, which provides statewide layoffs, job openings, and quits to directly proxy labor demand

and supply. Using the JOLTS data from 2001–2019 for 48 states and D.C., we estimate the

following counterpart of Eq.(3) for state s in year t and quarter q:

∆Ls,t,q

Es,t,q

= βhhds,t,q + βccds,t,q +ΛCs,t,q + δs + δt,q + εs,t,q. (4)

where the outcome variable is a quarterly worker flow, ∆Ls,t,q, relative to the start-of-quarter

employment (proxied by the end-of-previous-quarter employment), Es,t,q, and other notations

follow Eq.(3).22 Columns 1–4 of Table 1b report the results. We find that hot days significantly

reduce hires (column 1) and fuel both layoffs and quits (columns 2–4), suggesting that both

labor demand and supply shrink in response. Although these worker flows include job-to-

job flow and transition to out-of-labor-force, we find that less hires (−0.214 pp), more layoffs

(+0.076 pp), and quits (+0.058 pp) are more likely to contribute to smaller outflows from and

larger inflow into unemployment. These results quantitatively suggest that the heat impact

primarily operates through the labor demand side. Cold days noticeably decrease both hiring

and quits, slowing worker reallocation.

Replacing worker flows ∆Ls,t,q in the model in Eq.(4) with market-level state variables,

columns 5–7 in turn analyze the worker–firm matching. Column 5 shows that hot days re-

duce job openings, indicating a contraction in labor demand. Driven largely by fewer hires,

Column 6 shows that both hot and cold days increase unemployment. Taken together, Column

7 shows that extreme temperatures reduce the labor market tightness, lowering unemployed

workers’ job-finding probabilities and slowing exits from unemployment.

21Job creation/destruction capture establishment-level changes in job positions, whereas hires/separations
reflect worker-level flows into and out of jobs (Davis et al. (1996))—when five workers separate and five are
hired within the same establishment, job creation and destruction remain zero. See Appendix IV for formal
definitions of each proxy.

22Analogous to Eq.(3), Cs,t,q includes rainy days per quarter. The regression is weighted by log(Es,t,q) and
standard errors are clustered by state.
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5 Consequences for Unemployment Insurance

Established in the aftermath of the Great Depression in the 1930s, the U.S. unemployment

insurance (UI) system has provided roughly 50% wage replacement for around 26 weeks for

the eligible unemployed workers, where its benefit generosity—covering eligibility, replacement

ratio, monitoring rules, and maximum duration—is regulated primarily at the state level.23

The UI program constitutes a sizable fiscal system, with annual expenditures of $30 billion,

surpassing those of federal safety-net programs such as Temporary Assistance to Needy Families

(TANF) and Food Stamps. Tracking the climate sensitivity of UI recipiency is not only valuable

for quantifying the fiscal externalities of unemployment, but it is also informative about the

mechanism of climate-damaged labor demand, given that UI receipt begins with job losses that

are through “no fault of their own”.

This section estimates the climate effects on UI recipiency across states, and examines the

nationwide implications of climate change. We construct the statewide monthly insured unem-

ployment rate, InsuredUnempRates,t,m, in state s, year t, and month m, defined as UI receipts

divided by UI-covered employment (see e.g., FRED). The data are drawn from the adminis-

trative UI records over 1990–2019, provided by the Employment and Training Administration

(ETA) of the U.S. Department of Labor. We estimate the following model:

InsuredUnempRates,t,m = βhhds,t,m + βccds,t,m +ΛCs,t,m + δs + δt,m + εs,t,m, (5)

where notations follow the previous models, Eq.(1)–(4); for example, Cs,t,m includes rainy days.

The regression is weighted by the logarithm of monthly UI-covered employment, and standard

errors are clustered by state.

We find that key temperature estimates are both precisely estimated as βh = 0.105 (s.e. 0.034)

and βc = 0.292 (s.e. 0.027). This implies that additional 10 hot days per month increase the in-

sured unemployment rate by 0.11 percentage points (pp), while 10 cold days increase it by 0.29

pp (relative to a mean of 2.28%). We also find analogously significant effects for claimed weeks,

compensated weeks and total benefits paid (Table A-8). The estimates are strongly robust to

replacing state fixed effects, δs, with state-year fixed effects, δs,t, suggesting that UI extensions

or relaxed eligibility triggered by regional unemployment rates are less likely to confound the

estimates. Given that UI eligibility requires involuntary job loss, the findings are consistent

with a contraction in labor demand, as suggested earlier in Table 1.

Notably, the sensitivities of UI-related outcomes with cold days are broadly three to five

times larger than those with hot days (Table A-8), whereas the corresponding estimates for

23For background on cross-state unemployment insurance (UI) institutions, see e.g., Nicholson and Needels
(2006), Auray et al. (2019) and Rujiwattanapong (2024).
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unemployment rates are nearly identical (Table A-1). Albeit partially speculative, we offer two

complementary explanations. First, summer unemployment disproportionately reflects seasonal

job losses among part-time and lower-earning workers (e.g., construction laborers)—who are less

likely to be UI-eligible or receive generous benefits—whereas winter unemployment more often

arises from the nonrenewal of annual contracts among full-time, higher-earning workers (e.g.,

business professionals). Consistent with this pattern, insured unemployment exhibits a much

sharper spike from November to January than from June to August (Figure A-13b).

Second, although identification relies on within-state variation, the hot- and cold-day coef-

ficients are primarily informed by geographically distinct sets of states. The UI responses to

cold days are driven by Northern states with more generous UI systems (e.g., New Jersey, Mas-

sachusetts). By contrast, the identification of the hot-day effects relies disproportionately on

Southern states where UI responses are attenuated under less generous benefit regimes (e.g.,

Florida, Arizona) (Figure A-13a).

Analogous to the earlier quantitative exercise for unemployment (Section 3.2), we next quan-

tify how climate exposure and its long-run change have shaped insured unemployment, allowing

for up to two months of lagged effects. Reflecting greater UI sensitivity to cold days, the impacts

are concentrated in the fall and winter (Q4/Q1) and generally larger in Northern states than

in Southern states (Figure A-14a)—revealing opposing temperature sensitivities that shape

unemployment and UI dynamics (recall Figure 4a).

Overall, we find that the temperature warming since the 1950s–70s has reduced insured

unemployment over 2000–2019 through milder winters, while increasing it through harsher

summers. As these opposing forces counteract each other, the net impact of climate change

is close to zero (Figure A-14b). However, UI-augmenting summer effects have expanded more

rapidly than winter-related reductions. Taken together, the projected warming is therefore

likely to raise insured unemployment—and the associated fiscal burden—through intensifying

summer unemployment.

6 Conclusion

Since the pre-industrial era, economic activities have been hampered by the lottery of Mother

Nature, including droughts, floods, and the pandemic (Diamond (1999)). Despite its dominant

role of within-year fluctuation and real-world implications, little is known about unadjusted

high-frequency unemployment dynamics, partly because they are routinely subjected to sea-

sonal adjustment. Using a newly created panel dataset of the U.S. counties, we show that

unemployment rates are highly responsive to climate shocks that vary across time and space,
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operating primarily through reduced hiring. Aggregating these spatial impacts, our analysis

yields a macroeconomic implication of climate change for the secular decline in labor market

dynamism.

In light of forecasts of accelerated warming, our findings suggest that summer unemployment

is likely to continue rising—an emerging dynamic that cannot be inferred from the standard

seasonally-adjusted statistics. In the short run, these forecasts call for strengthened job secu-

rity measures, targeted in the summer,24 including UI extensions, public jobs under climate-

controlled environments (e.g., Summer Youth Employment Program (Gelber et al. (2016))),

and liquidity support to prevent layoffs in heat-exposed industries. In the long run, contin-

ued technological development (e.g., air conditioning) will be essential to shield workers from

worsening heat shocks (Hötte and Jee (2022)).

We also encourage forecasters to explicitly incorporate weather forecasts into simulation mod-

els to improve predictions of unemployment and employment outcomes, especially when heat

waves or droughts can be forecast with reasonable accuracy. While summer unemployment is

projected to rise in the coming decades, heightened climate risk associated with unprecedented

events (e.g., hurricanes, arctic blasts, wildfires) may further amplify unemployment risk. We

leave the role of rising climate uncertainty for future work.

24In the ancient Egypt, summer flooding of the Nile River created an abundance of unemployed workers. Some
historians argue that the kingdom provided pyramid construction as a form of job security (Butzer (1976)).
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Elsby, Michael WL, Bart Hobijn, Ayşegül Şahin, Robert G Valletta, Betsey Stevenson, and

Andrew Langan, “The Labor Market in the Great Recession—an update to September 2011

[with comment and discussion],”Brookings Papers on Economic Activity, 2011, pp. 353–384.

Furceri, Davide, Swarnali A Hannan, Jonathan D Ostry, and Andrew K Rose, “Macroeco-

nomic consequences of tariffs,” Technical Report, National Bureau of Economic Research

2018.
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Kim, Hee Soo, Christian Matthes, and Toàn Phan, “Severe Weather and the Macroeconomy,”

American Economic Journal: Macroeconomics, April 2025, 17 (2), 315–41.

Kim, Ryan and Jonathan Vogel, “Trade shocks and labor market adjustment,”American Eco-

nomic Review: Insights, 2021, 3 (1), 115–130.

Lai, Wangyang, Yun Qiu, Qu Tang, Chen Xi, and Peng Zhang, “The Effects of Temperature

on Labor Productivity,”Annual Review of Resource Economics, 2023, 15 (1), 213–232.

Ma, Enjie (Jack), “Extreme Heat and Directed Innovation,” 2025. Job Market Paper, Cornell

University,

urlhttps://enjiema.com/files/JackMaJMP.pdf.

Mazloumi, Adel, Farideh Golbabaei, Somayeh Mahmood Khani, Zeinab Kazemi, Mostafa

Hosseini, Marzieh Abbasinia, and Somayeh Farhang Dehghan, “Evaluating effects of heat

stress on cognitive function among workers in a hot industry,”Health promotion perspectives,

2014, 4 (2), 240.

Milner, Allison, Andrew Page, and Anthony D LaMontagne, “Long-term Unemployment and

Suicide: A Systematic Review and Meta-analysis,” PloS One, 2013, 8 (1), e51333.

Nicholson, Walter and Karen Needels, “Unemployment insurance: Strengthening the relation-

ship between theory and policy,” Journal of Economic Perspectives, 2006, 20 (3), 47–70.

Park, Jisung, Nora Pankratz, and Arnold Behrer, “Temperature, Workplace Safety, and Labor

Market Inequality,” Technical Report 2021.

Ponticelli, Jacopo, Qiping Xu, and Stefan Zeume, “Temperature and Local Industry Concen-

tration,”Working Paper 31533, National Bureau of Economic Research August 2023.

Price, Brendan M. and Melanie Wasserman, “The Summer Drop in Female Employment,”The

Review of Economics and Statistics, 06 2024, pp. 1–46.

25



Qiu, Xincheng and Masahiro Yoshida, “Climate Change and the Decline of Labor Share,”

Technical Report, IZA Discussion Papers 2024.

Raphael, Steven and Rudolf Winter-Ebmer, “Identifying the Effect of Unemployment on

Crime,”The Journal of Law and Economics, 2001, 44 (1), 259–283.

Riesing, Kara, “Effect of Tornadoes on Local Labor Markets,”Technical Report, working paper

2018.

Rujiwattanapong, W. Similan, “Job Search, Job Findings and the Role of Unemployment

Insurance History,” Discussion Papers 2441, Centre for Macroeconomics (CFM) Sep 2024.

, “Unemployment dynamics and endogenous unemployment insurance extensions,”European

Economic Review, 2025, 178, 105106.

and Masahiro Yoshida, “Climate Change and Unemployment Seasonality: Evidence from

U.S. Counties,” WINPEC Working Paper E2512, Waseda Institute of Political Economy

(WINPEC) 5 2025.

Somanathan, Eswaran, Rohini Somanathan, Anant Sudarshan, and Meenu Tewari, “The Im-

pact of Temperature on Productivity and Labor Supply: Evidence from Indian Manufactur-

ing,” Journal of Political Economy, 2021, 129 (6), 1797–1827.

Stock, James H and Mark W Watson, “Business cycle fluctuations in US macroeconomic time

series,”Handbook of macroeconomics, 1999, 1, 3–64.

Xiao, Zhanbing, “Labor Exposure to Climate Risk, Productivity Loss, and Capital Deepening,”

2021. Working paper, posted 1 August 2021; revised 29 March 2024.

Yoshida, Masahiro, “Climate Change and the Rise of Adult Male Dropouts,” SSRN working

paper, 2025.

Zhang, Peng, Olivier Deschenes, Kyle Meng, and Junjie Zhang, “Temperature Effects on

Productivity and Factor Reallocation: Evidence from a Half Million Chinese Manufacturing

Plants,” Journal of Environmental Economics and Management, 2018, 88, 1–17.

Zivin, Joshua Graff and Matthew Neidell, “Temperature and the Allocation of Time: Impli-

cations for Climate Change,” Journal of Labor Economics, 2014, 32 (1), 1–26.

26



APPENDICES FOR ONLINE PUBLICATION

Climate Change and Unemployment Dynamics:

Evidence from U.S. Counties

W. Similan Rujiwattanapong and Masahiro Yoshida

February, 2026



I Appendix: Data

I.1 Climate Change

Weather stations. Panel (a) of Figure A-1 shows the long-run trend in the number of weather

stations operating in the U.S. from 1900 to 2019, separated by the availability of stations’ daily

records in each year (four series). The number of stations in operation generally increases

over time. Daily weather measures are constructed using only stations with complete daily

records in each year. Panel (b) of Figure A-1 illustrates the spatial distribution of stations

with complete records (red dots) in 2019 overlaid on county boundaries. The map shows dense

climate monitoring overall, particularly in populous areas.

Figure A-1: Weather Stations in the U.S. Mainland

(a) Number of Operating Stations (1900–2019)
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Notes: Panel (a): the number of weather stations in the U.S. mainland from the Global Historical
Climatology Network Daily (GHCN-daily), provided by the National Climatic Data Center (NCDC)
of the National Oceanic and Atmospheric Administration (NOAA). Panel (b): the distribution of
weather stations with complete records (red dots) over county borders (thin lines) and state borders
(thick lines).
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Weather variables at the county level. We construct daily minimum and maximum temper-

atures, precipitation, and snowfall from GHCN-Daily stations with complete daily records in

each year, 1950–2019. Following the inverse-distance weighting approach commonly used in the

literature, we compute county-level daily weather measures by averaging observations from the

three weather stations closest to each county’s 2020 population centroid (as provided by the

Census Bureau), with weights given by the inverse distance to the centroid.

Figure A-2 displays the geographic distribution of hot and cold days across counties. Panel

(a1/b1) shows the annual frequency of hot days and cold days averaged over the period 2000–

2019, and Panel (a2/b2) illustrates the change in period-averaged exposure to hot and cold

days between 1950–1979 and 2000–2019.

Figure A-2: Extreme Temperature Days across U.S. Counties

(a) Hot days

(b) Cold days

Notes: Panel (a1/b1): Period-average exposure over 2000–2019. Panel (a2/b2): Changes in period-
average exposure between 1950–1979 and 2000–2019. Thresholds for hot and cold days are set to 75◦F
and 50◦F, respectively, based on average working-hour temperature, constructed as a weighted average
of daily maximum and minimum temperatures, with a weight of 0.75 on the maximum.
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Precipitation. Figure A-3 shows the spatial distribution of precipitation across counties over

the period 2000–2019, as well as the change in period-averaged exposure to rainy days between

1950–1979 and 2000–2019.

Figure A-3: Precipitation across U.S. Counties

Notes: Panel (a): Period-averaged exposure over 2000–2019. Panel (b): Changes in period-averaged
exposure between 1950–1979 and 2000–2019.

Humidity. The relative humidity is constructed from dew points at another set of station

records from NOAA’s Global Summary of the Day (GSoD). To compute a relative humidity,

we use a standard meteorological formula from Glossary of Meteorology by the American Me-

teorological Society. A relative humidity Hd of a day d and a vapor pressure v(T ) as a function

of temperature T is given by:

Hd ≡
v(Tdew)

v(Td)
; v(T ) = 0.6112 exp(17.67T/(T + 243.5))× 10 (A1)

where v(Tdew) is a saturation vapor pressure at the dew point Tdew and v(Td) is a day d ’s vapor

pressure at a temperature Td. Heat Indexd of a day d is a function of a temperature Td and a

daily relative humidity Hd such that

Heat Indexd = 0.81T +Hd(0.99Td − 14.3) + 46.3. (A2)
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I.2 Unemployment

Unemployment seasonality outside the U.S. Figure A-4 illustrates changes in seasonal un-

employment rates outside the U.S., focusing on Canada, Germany, the UK, and the OECD

aggregate. Canada, Germany, and the OECD have experienced a decline in seasonal volatility

similar to that in the U.S. By contrast, seasonality in the UK has been amplified by rising

summer unemployment.

Figure A-4: The Dynamics of Seasonal Unemployment Rates across Countries
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Notes: In each period, a seasonal unemployment rate is computed as the difference between period-
average NSA and SA monthly nationwide (or OECE-wide) unemployment rates, as provided by the
FRED (Federal Reserve Economic Data).
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Seasonal unemployment dynamics across commuting zones. As a commuting-zone counter-

part to Figure 2c, Figure A-5 shows that half-year exposure to hot days in summer and cold

days in winter is positively associated with changes in seasonal unemployment across commuting

zones over 1990–2019.

Figure A-5: Temperature Shocks and Seasonal Unemployment Rate Swings

(∆NSA unemployment rate within commuting zones averaged over 1990–2019)
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Notes: County-level exposure to hot days (≥75◦F) and cold days (<50◦F) is aggregated to the com-
muting zone (CZ) level, weighted by county-level labor force over 1990–2019. The half-year seasonal
swing in unemployment rate in CZs are computed from the BLS monthly data. The fitted lines are
weighted by period-average labor force, represented by the bubble size. The y-axis is truncated at ˘2
for visibility.
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The seasonal regularity in employment. In contrast to the seasonality of unemployment,

Figure A-6 documents the seasonality of employment. Figure A-6a shows moderation in the

seasonal employment rate (i.e., the employment-to-population ratio). Figure A-6b indicates

that hotter summers and colder winters are associated with slower employment growth and

larger declines within states, respectively.

Figure A-6: Employment Seasonality in the U.S.

(a) Long-run Trend of Seasonal Employment Rate
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(b) Temperature Shocks and Seasonal Employment Rate Swings

(∆NSA employment rate within states averaged over 1990–2019)

AL

AZ

AR

CA

CO

CT

DE

DC

FL

GA

ID

IL
IN

IA

KS

KY

LA

ME

MD

MA

MI
MN

MS
MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN
TX

UTVT

VA

WA

WV

WI

WY

WLS slope (pp per 10 days):  −0.029 (s.e. 0.010)-0.5

0.0

0.5

1.0

1.5

2.0

0 50 100 150
hot days 

 (in Q2–Q3)

Δ
pp

(b1) Summers 
 (from Apr to Oct)

AL

AZ

AR

CA

CO

CT

DE
DC

FL

GA

ID

IL

IN

IA

KS

KY
LA

ME

MD

MA

MI MN

MS MO

MT

NE

NV

NH

NJ
NM

NY

NC OH

OK

OR

PA

RI

SC

SD
TNTX

UT VT

VA

WA

WV

WI

WY

WLS slope (pp per 10 days):  −0.011 (s.e. 0.007)-2.0

-1.5

-1.0

-0.5

0.0

0.5

0 50 100 150
cold days 

 (in last Q4–Q1)

Δ
pp

(b2) Winters 
 (from last Oct to Apr)

Notes: Panel (a): Within a given month or quarter, the seasonal employment rate is defined as
the difference between the non-seasonally adjusted (NSA) and seasonally adjusted (SA) nationwide
employment-to-population ratios, computed using BLS employment series (ages 16+) and SEER
working-age population data (ages 15+). Panel (a1): Change in the period-averaged seasonal monthly
employment rate, comparing 1950–1983 with 1984–2019. Panel (a2): Five-year moving average of the
quarterly seasonal employment rate. Panel (b): County-level exposure to analogously defined hot and
cold days is aggregated to states plus D.C. averaged during 1990–2019, weighted by county labor force.
The fitted lines are weighted by the period-average population (ages 15+), represented by bubble size.
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II Appendix: Empirical Analysis

II.1 Robustness

Fixed effects. Figure A-7 tests the sensitivity of our baseline temperature estimates with

county fixed effects (FEs) and year-month FEs (thin black lines) to alternative FE combinations.

Figure A-7: Robustness to Fixed Effects (FEs)
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(5) county FEs + year-month FEs + state-month FEs
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(6) county FEs + state-year-month FEs

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
working-hour daily temperature (°F)

pp
 p

er
 1

0 
da

y
s
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Notes: Effects of temperature exposure on unemployment rate (pp, 1990–2019): 10 days in each
temperature bin (relative to 65–75◦F). N = 1, 117, 358. Unit of analysis: counties × years × months.
In Eq.(1), county FEs and year-month FEs are replaced with alternative combinations of FEs in panels
(2)–(7), corresponding to the columns reported in Table A-2. Rainy days per month are controlled.
Regressions are weighted by the log of labor force. Dotted red lines are 95% confidence intervals,
constructed from standard errors clustered by commuting zone.
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Additional weather variables. Figure A-8 tests the robustness to inclusion of additional weather

controls. Including or excluding these weather variables does not significantly alter the tem-

perature estimates.

Figure A-8: Robustness to Additional Weather Controls
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Notes: Effects of temperature exposure on unemployment rate (pp, 1990–2019): 10 days in each
temperature bin (relative to 65–75◦F). N = 1, 117, 358. Unit of analysis: counties × years × months.
Eq.(1) is estimated with alternative additional weather variables Cl,t,m in (2)–(6). Note that (1)–
(6) corresponds with columns in Table A-3. County fixed effects and year-month fixed effects are
controlled for. Regressions are weighted by the log of labor force. Red dotted lines are 95% confidence
intervals, constructed from standard errors clustered by commuting zone. Thin black lines indicate
point estimates of the baseline (1).

Two-tailed models under alternative temperature cutoffs. We simplify treatment variables∑
b∈{1,··· ,10,13,··· ,16} days

b
l,t,m in the baseline model into two summary measures, as follows:

UnempRatel,t,m = βhhdl,t,m + βccdl,t,m +ΛCl,t,m + δl + δt,m + εl,t,m, (A3)

where hdl,t,m and cdl,t,m denote hot days (≥75◦F) and cold days (<50◦F), respectively. Alterna-

tively, Table A-1 tests reasonable pairs of temperature cutoffs for hot and cold days. Consistent

with the U-shape estimates at Figure 3a1, columns 1–5 in Panel (a) and (b) yield significantly

positive effects on NSA unemployment rates. By contrast, temperature effects on SA unem-

ployment rates are an order of magnitude smaller and, for cold days, are mostly imprecisely
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estimated and difficult to interpret.

Table A-1: Robustness to Temperature Cutoffs (Two-Tailed Models, 1990–2019)

Panel (a): Cutoffs for Hot Days
Baseline

73◦F 75◦F 77◦F 80◦F 85◦F 90◦F
Dependent variable: NSA unemployment rate (pp)

(1) (2) (3) (4) (5) (6)
10 hot days 0.201 0.240 0.262 0.259 0.201 0.093

(0.025) (0.026) (0.024) (0.022) (0.020) (0.029)
10 cold days (<50◦F) 0.288 0.248 0.215 0.206 0.274 0.351

(0.025) (0.026) (0.025) (0.024) (0.024) (0.024)

Adjusted R2 0.713 0.713 0.714 0.714 0.713 0.713
Dependent variable: SA unemployment rate (pp)

(7) (8) (9) (10) (11) (12)
10 hot days 0.009 0.015 0.014 0.011 0.012 −0.018

(0.007) (0.008) (0.008) (0.008) (0.009) (0.014)
10 cold days (<50◦F) 0.003 −0.001 −0.002 −0.0004 0.001 0.009

(0.006) (0.007) (0.007) (0.008) (0.006) (0.004)

Adjusted R2 0.747 0.747 0.747 0.747 0.747 0.747

Panel (b): Cutoffs for Cold Days
Baseline

55◦F 50◦F 45◦F 40◦F 35◦F 30◦F
Dependent variable: NSA unemployment rate (pp)

(1) (2) (3) (4) (5) (6)
10 hot days (≥75◦F) 0.295 0.240 0.220 0.234 0.263 0.293

(0.026) (0.026) (0.023) (0.022) (0.022) (0.022)
10 cold days 0.202 0.248 0.259 0.250 0.239 0.235

(0.023) (0.026) (0.026) (0.026) (0.027) (0.031)

Adjusted R2 0.713 0.713 0.714 0.713 0.713 0.713
Dependent variable: SA unemployment rate (pp)

(7) (8) (9) (10) (11) (12)
10 hot days (≥75◦F) 0.016 0.015 0.017 0.018 0.019 0.018

(0.007) (0.008) (0.008) (0.007) (0.007) (0.006)
10 cold days −0.004 −0.001 −0.005 −0.008 −0.010 −0.013

(0.006) (0.007) (0.006) (0.006) (0.006) (0.006)

Adjusted R2 0.747 0.747 0.747 0.747 0.747 0.747

Notes: N = 1, 117, 358 for the NSA unemployment rates andN = 1, 114, 548 for the SA series; for some
county–year–month cells, seasonal adjustment is not reported by the BLS. Unit of analysis: counties
× years × months. The two-tailed model (Eq.(A3)) is estimated using reasonable temperature cutoffs.
Rainy days are controlled for, along with county fixed effects and year-month fixed effects. Regressions
are weighted by the log of labor force; standard errors clustered by commuting zone.
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Robustness to fixed effects: two-tailed models Using the two-tailed model, Table A-2

reports the estimates under alternative fixed-effect combinations corresponding to panels (2)–

(7) in Figure A-7, in addition to the baseline specification (1). Adding state-month FEs or

state-year-month FEs reduces the estimates by roughly half, but the effects remain precisely

estimated.

Table A-2: Robustness to Fixed Effects (Two-Tailed Model, 1990–2019)

Dependent variable: unemployment rate (pp)
Baseline

(1) (2) (3) (4) (5) (6) (7)

10 hot days 0.240 0.229 0.219 0.225 0.125 0.132 0.139
(0.026) (0.027) (0.025) (0.026) (0.025) (0.039) (0.045)

10 cold days 0.248 0.255 0.262 0.254 0.108 0.143 0.151
(0.026) (0.027) (0.026) (0.026) (0.029) (0.049) (0.053)

Fixed effects
county FEs Yes - Yes Yes Yes Yes -
county-year FEs - Yes - - - - Yes
county linear trend - - Yes - - - -
year-month FEs Yes Yes Yes Yes Yes - -
state-month FEs - - - - Yes - -
state-year FEs - - - Yes - - -
state-year-month FEs - - - - - Yes Yes

Adjusted R2 0.713 0.904 0.767 0.784 0.721 0.795 0.918

Notes: N = 1, 117, 358. Unit of analysis: counties × years × months. The two-tailed model (Eq.(A3))
is estimated using hot days (≥75◦F) and cold days (<50◦F) with alternative combination of fixed
effects in (2)–(7). Rainy days per month are controlled for. Regressions are weighted by the log of
labor force; standard errors clustered by commuting zone.
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Robustness to additional weather variables: two-tailed models Table A-3 examines the

sensitivity of temperature effects in the simpler two-tailed model to alternative sets of addi-

tional weather controls, corresponding to panels (1)–(6) in Figure A-8. Column 1 repeats our

two-tailed baseline specification. Column 2 includes no additional weather controls. Columns

3 and 4 add daily precipitation and relative humidity (constructed by Eq.(A1)), respectively,

to the baseline. The estimates remain broadly stable across specifications. Columns 5 and 6

sequentially add snowfall on the extensive and intensive margins. The magnitudes of tempera-

ture estimates are modestly reduced, but remain precisely estimated. As an extension, Column

7 introduces “uncomfortable days,” defined as days with a heat index above 80◦F, that interact

temperature with relative humidity (constructed by Eq.(A2)) and yields larger and more precise

estimates than the baseline hot-day effects.

Table A-3: Robustness to Additional Weather Variables (Two-Tailed Models, 1990-2019)

Dependent variable: unemployment rate (pp)
Baseline

(1) (2) (3) (4) (5) (6) (7)

10 hot days 0.240 0.225 0.247 0.243 0.206 0.206
(0.026) (0.025) (0.025) (0.026) (0.024) (0.024)

10 uncomfortable 0.266
days (0.023)
10 cold days 0.248 0.262 0.252 0.219 0.208 0.208 0.197

(0.026) (0.026) (0.024) (0.029) (0.025) (0.025) (0.026)
10 rainy days 0.151 0.137 0.098 0.145 0.145 0.115

(0.023) (0.021) (0.022) (0.023) (0.023) (0.021)
daily precipitation 0.049

(0.012)
relative humidity 0.007
([0, 100]%) (0.002)
10 snowy days 0.117 0.119

(0.023) (0.021)
daily snowfall −0.004
(10 cm) (0.015)

N 1,117,358 1,117,370 1,110,582 1,117,358 1,117,358 1,117,358 1,117,358
Adjusted R2 0.713 0.713 0.713 0.714 0.714 0.714 0.714

Notes: Unit of analysis: counties × years × months. The two-tailed model (Eq.(A3)) is estimated
using hot days (≥75◦F) and cold days (<50◦F), along with alternative additional weather variables
Cl,t,m in (2)–(6). County fixed effects and year-month fixed effects are controlled for. Regressions are
weighted by the log of labor force; standard errors clustered by commuting zone.
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Two-tailed models with lagged weather variables. Table A-4 shows the robustness results,

adding lagged hot days and cold days in the two-tailed baseline model. Hot days exhibit larger,

more persistent, and more precisely estimated lagged effects than cold days.

Table A-4: Robustness to Lagged Weather Variables (Two-Tailed Models, 1990–2019)

Dependent variable: unemployment rate (pp)

Baseline Simulation
baseline

(1) (2) (3) (4) (5) (6)

10 hot days 0.240 0.110 0.150 0.161 0.161 0.150
(0.026) (0.017) (0.018) (0.019) (0.019) (0.018)

1-month lag 0.248 0.139 0.150 0.151 0.148
(0.023) (0.015) (0.015) (0.015) (0.015)

2-month lag 0.168 0.116 0.124 0.122
(0.020) (0.015) (0.015) (0.015)

3-month lag 0.085 0.077 0.079
(0.013) (0.011) (0.011)

4-month lag 0.005 0.025
(0.011) (0.007)

5-month lag −0.047
(0.016)

10 cold days 0.248 0.119 0.156 0.159 0.167 0.170
(0.026) (0.016) (0.017) (0.018) (0.018) (0.017)

1-month lag 0.166 0.072 0.083 0.082 0.085
(0.022) (0.015) (0.014) (0.014) (0.014)

2-month lag 0.085 0.048 0.051 0.053
(0.017) (0.013) (0.013) (0.012)

3-month lag 0.030 0.006 0.001
(0.012) (0.010) (0.010)

4-month lag 0.037 0.027
(0.010) (0.008)

5-month lag 0.029
(0.014)

N 1,117,358 1,117,357 1,117,356 1,117,355 1,117,354 1,117,353
Adjusted R2 0.713 0.716 0.716 0.717 0.717 0.717

Notes: Unit of analysis: counties × years × months. The two-tailed model (Eq.(A3)) is estimated
using hot days (≥75◦F) and cold days (<50◦F) with a M -month distribution of lags (M ∈ {0, · · · , 5}).
An analogously lagged series of rainy days is controlled for, along with county fixed effects and year-
month fixed effects. Regressions are weighted by the log of labor force; standard errors clustered by
commuting zone.
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II.2 Auxiliary Analyses

Clustering units. Figure A-9 examines alternative clustering units for standard errors. 95%

confidence intervals, constructed using standard errors clustered by commuting zone, by state,

and by state-year (two-way clustering), are illustrated separately.

Figure A-9: Robustness to Clustering Units
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Notes: Effects of temperature exposure on unemployment rate (pp, 1990–2019): 10 days in each
temperature bin (relative to 65–75◦F). N = 1, 117, 358. Unit of analysis: counties × years × months.
Eq.(1) is estimated with alternative units of clustering errors. Rainy days are controlled for, along
with county fixed effects and year-month fixed effects. Regressions are weighted by the log of labor
force. 95% confidence intervals, constructed from standard errors under alternative clustering units,
are illustrated around the point estimates (red lines).
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Robustness to moving-average treatment windows. Table A-5 reports the estimates from the

the two-tailed baseline model using an M -month (M ∈ {1, · · · , 6}) moving-average treatment

window for weather variables.

Table A-5: Robustness to Moving-average Treatment Windows (Two-Tailed Models, 1990–
2019)

Dependent variable: unemployment rate (pp)
Moving-average treatment window

Baseline
1 month 2 months 3 months 4 months 5 months 6 months

(1) (2) (3) (4) (5) (6)
10 hot days 0.240 0.350 0.450 0.530 0.571 0.568
per month (0.026) (0.037) (0.047) (0.055) (0.057) (0.055)

10 cold days 0.248 0.294 0.314 0.308 0.295 0.272
per month (0.026) (0.035) (0.043) (0.048) (0.051) (0.049)

Adjusted R2 0.713 0.715 0.716 0.716 0.715 0.713

Notes: N = 1, 117, 358. Unit of analysis: counties × years × months (moving-averaged over an
M -month (M ∈ {1, · · · , 6}) treatment window). The two-tailed model (Eq.(A3)) is estimated using
M -month moving average of hot days (≥75◦F) and cold days (<50◦F). An M -month moving average
of rainy days is controlled for, along with county fixed effects and year-month fixed effects. Regressions
are weighted by the log of labor force; standard errors clustered by commuting zone.
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Spatial heterogeneity. How does the climate impact differ across space? To see this, we start

by allowing temperature effects in the two-tailed model to vary with regional climate normals,

proxied by the difference in period-averaged exposure to hot and cold days during the 1980s.

Table A-6 tests heterogeneous impacts across regional climate normals. We find that heat

effects are stronger in historically hot regions (e.g., the Southeast), and cold effects are stronger

in historically cold regions (e.g., the Northeast). This plausibly reflects their greater exposure

to the extreme upper and lower tails of the daily temperature distribution.

Table A-6: Spatial Heterogeneity across Differential Climate Normals (1990–2019)

Dependent variable: unemployment rate (pp)

Cutoffs for cold days
Baseline

55◦F 50◦F 45◦F 40◦F 35◦F
(1) (2) (3) (4) (5)

10 hot days (≥ 75◦F) 0.138 0.120 0.120 0.113 0.093
(0.020) (0.020) (0.020) (0.021) (0.024)

10 cold days 0.028 0.079 0.089 0.087 0.092
(0.022) (0.026) (0.026) (0.023) (0.022)

10 hot days 0.005 0.005 0.007 0.010 0.013
× hot days minus cold days (1980s) (0.001) (0.001) (0.001) (0.001) (0.001)

10 cold days −0.013 −0.013 −0.013 −0.014 −0.018
× hot days minus cold days (1980s) (0.002) (0.002) (0.003) (0.003) (0.004)

Adjusted R2 0.714 0.714 0.714 0.714 0.714

Notes: N = 1, 117, 358. Unit of analysis: counties × years × months. The two-tailed model (Eq.(A3))
is estimated using hot days (≥75◦F) and cold days under different cutoffs, interacted with a measure
of historical climate defined as the 1980s average difference between hot and cold days. Rainy days are
controlled for, along with county fixed effects and year-month fixed effects. Regressions are weighted
by the log of labor force; standard errors clustered by commuting zone.
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Adaptation. Does the climate impact diminish over time, consistent with adaptation? Table

A-7 estimates models interacted with linear time trend across different cold-day thresholds. As

all the coefficients on the interaction terms are statistically insignificant, we find little evidence

of adaptation.

Table A-7: Intertemporal Adaptation (1990–2019)

Dependent variable: unemployment rate (pp)

Cutoffs for cold days
Baseline

55◦F 50◦F 45◦F 40◦F 35◦F
(1) (2) (3) (4) (5)

10 hot days (≥75◦F) 0.354 0.292 0.270 0.284 0.313
(0.048) (0.051) (0.052) (0.052) (0.052)

10 cold days 0.255 0.301 0.308 0.292 0.273
(0.051) (0.054) (0.054) (0.054) (0.057)

10 hot days −0.041 −0.036 −0.034 −0.034 −0.034
× decades (0.029) (0.032) (0.033) (0.034) (0.035)
10 cold days −0.036 −0.037 −0.034 −0.029 −0.024
× decades (0.027) (0.026) (0.026) (0.026) (0.028)

Adjusted R2 0.713 0.714 0.714 0.714 0.713

Notes: N = 1, 117, 358. Unit of analysis: counties × years × months. The two-tailed model (Eq.(A3))
is estimated using hot days (≥75◦F) and cold days (<50◦F), interacted with a continuous measure of
decades since 1990. Rainy days are controlled for, along with county fixed effects and year-month fixed
effects. Regressions are weighted by the log of labor force; standard errors clustered by commuting
zone.
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III Appendix: Quantitative Assessment

Cumulative lagged effects. To compute the total impacts of extreme temperature, we sum

up lagged effects from previous months estimated earlier in Table A-4. For the purpose of

quantifying the aggregate climate impacts, we rely on a parsimonious two-tailed model because

bin models with lagged treatments are estimated much less precisely due to their large number

of variables.25 We construct the counterfactual unemployment rates over 1990–2019 (study

period) where all the days fell into normal (non-hot, non-cold) days, which shall be compared

with the observed unemployment rates to assess the role of extreme temperature. Figure A-10(a)

presents the simulation results using lag distributions of up to M months (M ∈ {0,· · · , 5}).
Incorporating lagged effects over M = 0 to M = 4 months systematically increases the implied

reduction in the unemployment rate absent extreme temperatures.

To assess how climate change induced the shrinkage of unemployment volatility, we construct

the counterfactual unemployment rates over 2000–2019 where the distribution of hot days and

cold days remained in the averaged over the pre-warming 1950–1979. Then, we compute its

within-year variance, which shall be compared with the observed data counterpart to assess the

role of climate change. Figure A-10(b) reports the results using lag distributions of up to M

months (M ∈ {0,· · · , 5}). Adding lags does not materially increase the implied contribution of

climate change.

Figure A-10: Simulated Impacts across Treatment Lags
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Notes: Simulations are based on a two-tailed model (Eq.(A3)) that includes hot days (≥75°F), cold
days (<50°F) under a different lag distribution. An analogously lagged series of rainy days is controlled
for, along with county fixed effects and year-month fixed effects. Regressions are weighted by the log
of the labor force. See above for the simulation procedure.

25We find that climate impacts are mechanically underrated when using more extreme and rarer temperature
thresholds (e.g., 85°F or 40°F) than the baseline cutoffs (i.e., 75°F or 50°F). These results are available upon
request.
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Robustness. Figure A-11 tests the robustness of the back-of-the-envelope calculations under

key modeling protocols. As a preferred benchmark for quantitative assessment, Model (1) uses

a two-tailed specification with up to two months of lags, as reported in Column 3 of Table A-4.

Model (2) additionally controls for state-year fixed effects. Models (3) and (4) are bin-model

counterparts to Models (1) and (2), respectively. Using bin models yields comparable implied

effects of extreme temperatures in Panel (a), but noticeably larger effects in Panel (b). However,

once lagged temperature bins are included, estimates become substantially less precise, and we

thus refrain from using these specifications for our baseline simulation.

Figure A-11: Simulated Impacts across Key Modeling Protocols Under a Quarterly Treatment
Window
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Notes: Simulations are based on two models: a two-tailed specification (Eq.(A3)) that includes hot
days (≥ 75°F) and cold days (< 50°F), and a bin specification (Eq.(1)) that includes hot-day bins
(13th–16th) and cold-day bins (1st–7th), with lags of up to two months for temperature variables. An
analogously lagged series of rainy days is controlled for, along with county fixed effects and year-month
fixed effects. Regressions are weighted by the log of the labor force. Panel (a): Monthly exposure to
hot days and cold days over 1990–2019 is aggregated using a weighted sum with the vector of lagged
coefficients. Panel (b): A difference of average monthly exposure to hot days and cold days between
1950–1979 and 2000–2019 is aggregated using a weighted sum with the vector of lagged coefficients.
See Section III for the simulation procedure.

Within-year climate impacts. Using a two-tailed model with up to two months of lagged

weather variables (Column 3 of Table A-4), Figure A-12 revisits the average within-year monthly

climate impacts. Figure A-12(a) shows the climate impacts on NSA unemployment rates over

1990–2019. We find that the effects of additional hot and cold days are concentrated in the

summer (Q3) and winter (Q1) quarters, respectively. The contribution of extreme temperatures

to non-recessionary NSA unemployment exhibits substantial seasonal dispersion, ranging from

7.6% in May to 17.8% in September. Figure A-12(b) shows the impacts from climate change
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from 1950s–1970s to 2000–2019. We find that fewer cold days reduce the unemployment rate

in winter (Q1), while more hot days increase it in summer (Q3) and fall (Q4).

Figure A-12: Simulated Impacts on the NSA Unemployment Rate across Months
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Notes: Simulations are based on a two-tailed model (Eq.(A3)) that includes hot days (≥75°F) and cold
days (< 50°F), with lags of up to two months. An analogously lagged series of rainy days is controlled
for, along with county fixed effects and year-month fixed effects. Regressions are weighted by the log of
the labor force. Panel (a): Monthly exposure to hot days and cold days over 1990–2019 is aggregated
using a weighted sum with the vector of lagged coefficients. Panel (b): A difference of average monthly
exposure to hot days and cold days between 1950–1979 and 2000–2019 is aggregated using a weighted
sum with the vector of lagged coefficients. See Section III for the simulation procedure.

IV Appendix: Mechanism

Definitions of flow proxies. For Table 1(a), we use the following proxies from the QWI based

on the QWI codebook (QWI 101).

• End-of-Quarter Employment Counts (EmpEnd): Estimated number of jobs on the last

day of the quarter.

• Job creation (FrmJbGn): Estimated number of jobs gained at firms throughout the quar-

ter.

• Job Destruction (FrmJbLs): Estimated number of jobs lost at firms throughout the quar-

ter.

• End-of-Quarter Hires (HirAEnd): Estimated number of workers who started a new job

in the specified quarter, which continued into next quarter.

• Separations (Stable) (SepS): Estimated number of workers who had a job for at least a

full quarter and then the job ended. Jobs are counted as a stable separation in the last

quarter of employment.
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For Table 1(b), we use the following proxies from the JOLTS based on the technical notes in

the BLS News Release.

• Hires: include all additions to the payroll during the entire reference month, includ-

ing newly hired and rehired employees; full-time and part-time employees; permanent,

short-term, and seasonal employees; employees who were recalled to a job at the location

following a layoff (formal suspension from pay status) lasting more than 7 days; on-call or

intermittent employees who returned to work after having been formally separated; work-

ers who were hired and separated during the month, and transfers from other locations.

• Separations: include all separations from the payroll during the entire reference month.

– Quits: include employees who left voluntarily, with the exception of retirements or

transfers to other locations.

– Layoffs and discharges: includes involuntary separations initiated by the employer,

including layoffs with no intent to rehire; layoffs (formal suspensions from pay sta-

tus) lasting or expected to last more than 7 days; discharges resulting from mergers,

downsizing, or closings; firings or other discharges for cause; terminations of perma-

nent or short-term employees; and terminations of seasonal employees (whether or

not they are expected to return the next season).

– Other separations: include retirements, transfers to other locations, separations due

to employee disability, and deaths.

• Job openings: include all positions that are open on the last business day of the reference

month. A job is open only if it meets all three of these conditions:

– A specific position exists, and there is work available for that position. The position

can be full-time or part-time, and it can be permanent, short-term, or seasonal.

– The job could start within 30 days, whether or not the employer can find a suitable

candidate during that time.

– The employer is actively recruiting workers from outside the establishment to fill the

position.
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V Appendix: Consequences for Unemployment Insurance

Descriptive statics: UI recipiency across states and months. Figure A-13 summarizes the

descriptive statistics of UI recipiency. Figure A-13a illustrates our key variable of analysis: the

state-level insured unemployment rate (i.e., the share of UI recipients in UI-covered employ-

ment) averaged over 1990–2019, shown in terms of its time trend (a1) and spatial dispersion

(a2). The insured unemployment rate (solid line) comoves with the standard unemployment

rate (dotted line), but with a smaller magnitude of about 1–4%. Moreover, the map (a2) shows

that Northern states typically exhibit higher insured unemployment rates than Southern states,

with notable exceptions such as South Dakota and California.

Figure A-13b documents monthly patterns in UI recipiency, comparing Northern and South-

ern states across three measures: (b1) the insured unemployment rate, (b2) average weekly

benefits per UI recipient, and (b3) average monthly benefits paid per UI-covered employment.

Two patterns emerge. First, the insured unemployment rate peaks primarily in winter (Q1) and

secondarily in summer (Q3), mirroring the seasonal cycle of the standard unemployment rate

(Recall Fact 1 in Section 2.3, Seasonal Regularity in Unemployment). Second, Northern states

consistently exhibit higher UI recipiency than Southern states, likely reflecting differences in UI

generosity.
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Figure A-13: Descriptive Statistics of UI Recipiency

(a) Insured Unemployment Rate

(b) UI Recipiency within a Year (over 1990–2019)
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Notes: Panel (a1): Unemployment rates are headline statistics published by the BLS. The insured
unemployment rate is defined as UI receipts divided by UI-covered employment. Panel (a2): Monthly
NSA insured unemployment rates are averaged over 1990–2019, excluding NBER recession months.
Bold black lines denote climatic zones defined by the NOAA. Panel (b) Southern states include the
Southeast (VA, NC, SC, GA, AL, FL), South (TX, LA, MS, AR, OK, KS), Southwest (AZ, NM, UT,
CO) and West (CA, NV). Northern states comprise the remaining contiguous U.S. states, including
D.C. NBER recession months are excluded from the sample. Source: UI recipients are constructed
by aggregating the Weekly Claims Data at the monthly level, while benefits paid, weekly benefits,
and UI-covered employment are constructed from the Monthly Program and Financial Data, both
produced by the Employment and Training Administration of the U.S. Department of Labor.
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Climate impact on UI recipiency across states. Table A-8 examines the climate impact on UI

recipiency across states over 1990–2019. Column 1 reports the key estimates of insured unem-

ployment rate in Eq.(5): an additional 10 hot or cold days per month increase UI recipients by

0.11pp and 0.29pp per UI-covered employment, respectively. Columns 2–4 analyze alternative

outcome variables using Eq.(5). Columns 2 and 3 show that claimed weeks and compensated

weeks, respectively, are also responsive to extreme temperatures. Column 4 indicates that 10

hot or cold days per month raise UI expenditure by 0.95US$ and 4.39US$ per UI-covered em-

ployment, respectively. Columns 5–8 replace state fixed effects with state-year fixed effects;

the estimates remain precisely estimated and generally larger in magnitude for hot days and

smaller for cold days.

Table A-8: Extreme Temperature and Statewide UI Recipiency (Monthly, 1990–2019)

Dependent variables
UI Claimed Compensated benefits

recipients weeks weeks paid
(0–100 pp) (weeks) (weeks) (2019 US$)

per UI-covered employment
(1) (2) (3) (4)

Descriptive statistics (mean (sd))
2.281 0.0866 0.0986 28.400
(0.825) (0.0346) (0.0364) (13.354)

10 hot days 0.105 0.00284 0.00272 0.946
(0.034) (0.00145) (0.00125) (0.374)

10 cold days 0.292 0.0143 0.0125 4.389
(0.027) (0.0012) (0.0011) (0.401)

state FEs Yes Yes Yes Yes
year × month FEs Yes Yes Yes Yes

Adjusted R2 0.809 0.804 0.792 0.813
(5) (6) (7) (8)

10 hot days 0.161 0.00485 0.00470 1.615
(0.032) (0.00139) (0.00119) (0.361)

10 cold days 0.211 0.0114 0.00967 3.465
(0.020) (0.0009) (0.00078) (0.294)

state × year FEs Yes Yes Yes Yes
year× month FEs Yes Yes Yes Yes

Adjusted R2 0.936 0.924 0.912 0.930

Notes: N = 17,640. Unit of analysis: states × years × months. Column 1 estimates the two-tailed model
(Eq.(5)) using hot days (≥75◦F) and cold days (<50◦F). Columns 2–4 replace the outcome variable accordingly.
Rainy days are controlled for. The regressions are weighted by the log of UI-covered employment; standard
errors clustered by state. Source: UI recipients are constructed by aggregating the Weekly Claims Data at
the monthly level, while claimed weeks, compensated weeks, benefits paid, and UI-covered employment are
constructed from the Monthly Program and Financial Data, both produced by the Employment and Training
Administration of the U.S. Department of Labor.
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Simulated climate impacts on UI recipiency. Analogous to the unemployment impacts in

Figure 4, Figure A-14 illustrates simulated impacts on insured unemployment. We use a two-

tailed model (Eq.(5)) that includes hot days (≥75°F) and cold days (<50°F) with lags up to

two months. By constructing a counterfactual in which all days are normal over 1990–2019, we

quantify the contribution of extreme temperature. Figure A-14a reports impacts over 1990–2019

by temperature type and by Northern and Southern states. By constructing a counterfactual in

which temperature shocks remain at their 1950s–70s averages, we then assess how much climate

change has shifted insured unemployment in subsequent decades. Figure A-14b shows impacts

for the 1980s, 1990s, 2000s, and 2010s relative to the 1950s–70s climate.

Figure A-14: Simulated Impacts on Insured Unemployment

(a) Impacts of Extreme Temperatures on the Insured Unemployment Rate (over 1990–2019)
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(b) Impacts of Climate Change since the 1950s–70s on the Insured Unemployment Rate
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Notes: Simulations are based on a two-tailed model (Eq.(5)) that includes hot days (≥75°F) and cold
days (<50°F) with lags of up to two months. An analogously lagged series of rainy days is controlled
for, along with state fixed effects and year-month fixed effects. Regressions are weighted by the log
of UI-covered employment. Panel (a): Monthly exposure to hot days and cold days over 1990–2019
is aggregated using a weighted sum with the vector of lagged coefficients. Southern states include the
Southeast (VA, NC, SC, GA, AL, FL), South (TX, LA, MS, AR, OK, KS), Southwest (AZ, NM, UT,
CO) and West (CA, NV). Northern states comprise the remaining contiguous U.S. states, including
D.C. Panel (b): Decade-specific differences in average monthly exposure to hot and cold days, relative
to the 1950s–1970s average, are aggregated using a weighted sum of lagged coefficients. Decades are
defined as 1980–1989 (1980s), 1990–1999 (1990s), 2000–2009 (2000s), and 2010–2019 (2010s).
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Within-year climate impacts. As in the earlier exercise on unemployment rate in Figure A-12,

Figure A-15 revisits the simulated impacts on monthly insured unemployment rate. Using a

two-tailed model (Eq.(5)) that includes hot days (≥75°F) and cold days (<50°F) with lags of

up to two months, we apply the same simulation procedure as in Figure A-14. Figure A-15(a)

shows the simulated climate impacts on insured unemployment rate over 1990–2019. Reflecting

larger estimated coefficients for cold days, we find that the climate effects are concentrated

in winter (Q1). Figure A-15(b) shows the simulated impacts of climate change between the

1950s–70s and 2000–2019. Fewer cold days in non-summer quarters (Q1–Q2, Q4) reduce insured

unemployment, nearly offsetting those from more hot days outside winter (Q2–Q4).

Figure A-15: Simulated Impacts on NSA Insured Unemployment Rate across Months
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Notes: Simulations are based on a two-tailed model (Eq.(5)) that includes hot days (≥75°F) and cold
days (<50°F), with lags of up to two months. An analogously lagged series of rainy days is controlled
for, along with state fixed effects and year-month fixed effects. Regressions are weighted by the log
of UI-covered employment. Panel (a): Monthly exposure to hot days and cold days over 1990–2019
is aggregated using a weighted sum with the vector of lagged coefficients. Panel (b): A difference of
average monthly exposure to hot days and cold days between 1950–1979 and 2000–2019 is aggregated
using a weighted sum with the vector of lagged coefficients.
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