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Abstract

Seasonal adjustment removes 80% of within-year variation in unemployment. Linking local
weather to unadjusted monthly unemployment rates at the U.S. county level from 1990 to
2019, we find that unemployment would have been 11% lower on average absent extreme
temperature days, whereas their effect on seasonally-adjusted series is largely obscured.
The effect primarily operates through fewer job openings and hiring, alongside higher
separations—especially layoffs—resulting in greater unemployment insurance recipiency
and a slacker labor market. We then quantify the nationwide implications of long-run
climate change: while milder winters have reduced unemployment, these gains are eroded
by accelerating summer unemployment.
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“Unemployment is like a headache or a high temperature—unpleasant and erhausting but not

carrying in itself any explanation of its cause.”

—William Henry Beveridge, Causes and Cures of Unemployment (1931)

1 Introduction

Since the Great Depression in the 1930s, unemployment has been a critical input to policy
debates (e.g., fiscal and monetary policy; minimum wage), consistently monitored as a “tem-
perature” of the economy (Beveridge (1931)). This centrality reflects its substantial real-world
consequences—disrupting consumption smoothing (Gruber (1997)), impairing mental health
(Eliason and Storrie (2009)), and even elevating risks of crimes (Raphael and Winter-Ebmer
(2001)) and suicides (Milner et al. (2013)). Our inquiry starts from a routinely overlooked
premise that joblessness is highly seasonal: the peak-to-trough of the recent seasonal compo-
nent of unemployment matches half of the seasonally adjusted (SA) spike in the Great Recession
(Figure 1al). In non-recession years, seasonal unemployment accounts for nearly 80% of the

within-year variation in the non-seasonally adjusted (NSA) unemployment rate (Figure 1a2).

Despite strong policy interest in the real-time release and short-term forecasting of unem-
ployment rates, economists—who place considerable emphasis on underlying trends and cy-
cles—conventionally smooth out the series through seasonal adjustment (Stock and Watson
(1999); Hodrick and Prescott (1997)). In line with this tradition, little attention is paid to
the regularity and mechanisms of high-frequency, NSA unemployment dynamics. As a first
step toward uncovering the “black box”, this paper directly relates regional NSA unemploy-
ment rates to arguably the most prominent seasonal factor—temperature—which fluctuates
markedly across time and space. We then assess the long-run implications of climate change

for nationwide unemployment dynamics, given the accelerated warming since around 2000.

We begin by comparing seasonal changes in the unemployment rate in summer and winter
with their corresponding temperature exposures. Figure 1b plots nationwide experience of hot
days in second-third quarters (Q2-Q3) and cold days in previous fourth-first quarters (pre Q4—
Q1), respectively', alongside the half-year change of NSA unemployment rates in 1950-2019.
Despite the limited sample of 70 years, we find statistically significantly positive slopes (t = 2).2
Guided by the historical associations, we hypothesize that the arrival of hot summers and
cold winters elevate unemployment rates. First, extreme temperature days would significantly
hurt labor efficiency (see a survey on Lai et al. (2023)), for example, by increasing fatigue,

absenteeism, operational errors, and workplace injury risk, and thereby, reducing labor demand.

! Exposure to hot and cold days in each county is averaged using contemporaneous county labor force weights.
2Including or excluding recession years does not significantly change the estimate.
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Figure 1: Nationwide Trend: Unemployment Dynamics in the U.S. (1950-2019)
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Panel (b): NSA monthly unemployment rates are differenced between April and October. County-level
exposure to hot and cold days (a daily working-hour temperature above 75°F and below 50°F) over
the two consecutive quarters, are aggregated nationwide, weighted by county labor force. The fitted

lines are trends without recession years, identified by NBER-~dated recession periods.



Second, temperature shocks also hamper production activities (Cachon et al. (2012); Chen and
Yang (2019)) through, for example, supply-chain delays, electricity shortages, and machine

failures. These channels operate through both fewer hiring and more separations.

To formally test this hypothesis, we build a new spatial panel data connecting plausibly-
random monthly-level exposure to binned temperature and NSA unemployment rates across
U.S. counties during 1990-2019, allowing for the standard identification under the two-way
fixed effects (see Dell et al. (2014)). Through year-month fixed effects, temperature impacts
are isolated from the nationwide business cycle and calendar effects (e.g., annual contracts and
school graduation). We find that 10 more extreme temperature days per month (hot days over
75°F or cold days below 50°F) increase the unemployment rate by 0.2-0.3 percentage points.
The results are robust to reasonable combinations of fixed effects and to the inclusion of addi-
tional weather variables (e.g., rainfall, snowfall, and humidity). Notably, relationships with SA
unemployment rates are substantially muted, suggesting that climate-induced unemployment

is predominantly concentrated in the often-overlooked seasonal component.

Equipped with the model, we then turn to assess the role of extreme temperatures and warm-
ing since around 1980. The back-of-the-envelope calculation corroborates that temperature is
a non-negligible driver of unemployment: absent extreme temperature days, the average NSA
unemployment rate over 2000-2019 would have been 11.4% lower, whereas the impact on the
seasonally adjusted series is 0.42%. The impacts are largely driven by hot summer days, which
are more prevalent in Southern states. Alongside global warming, we document that the volatil-
ity of seasonal unemployment has steadily declined (Figure 1a). By comparing the pre-warming
decades (1950-1979) with the new century (2000-2019), we estimate that warming tempera-
tures account for 5.6% of the reduction in the variance of NSA unemployment rates. This is
due to milder winters that lower winter unemployment peaks, combined with harsher summers

that elevate the summer unemployment floor at an accelerating pace.

To unpack the underlying mechanisms and inform the policy responses, we provide three com-
plementary analyses. First, tracking the quarterly job flows at county-by-industry level during
2000-2019, we find that exposure to hot and cold days reduces job creation and suppresses the
labor market dynamism. Hot days slightly increase job destruction, while cold days mitigate
it. Second, investigating state-level quarterly worker-flows, we also find that hot days slacken
the labor market primarily by reducing hiring through fewer job openings, and secondarily by
raising separations—especially layoffs. Third, we find that statewide unemployment insurance
receipt—Ilargely triggered by involuntary job loss—is also shaped by extreme temperature, re-
inforcing the contraction in labor demand documented in the first two results. Looking ahead,
projected temperature warming (IPCC (2023)) is expected to intensify fiscal burdens through

greater summer unemployment.



Related Literature. Connecting unemployment with climate variables, this paper contributes
to the intersections of macroeconomics, labor economics and climate science. First, the pa-
per proposes climate change as a novel determinant of unemployment dynamics. Economists
conventionally analyze unemployment as a consequence of spatial exposure to trade shocks
(Autor et al. (2013); Kim and Vogel (2021)), tariffs (Furceri et al. (2018)), industrial robots
(Acemoglu and Restrepo (2020)), mass layoffs (Gathmann et al. (2020); Black et al. (2005)),
and Ul regime (Chodorow-Reich et al. (2019); Rujiwattanapong (2025)). Our paper is the first
to empirically associate regional unemployment with climatic temperature, varying across both
time and space.®> Importantly, our climate impacts are not captured in seasonally-adjusted or
annualized data, the basis of nearly all prior studies. We provide a deeper understanding of
real-time unemployment rates—headline indicators of macroeconomic climates—by revealing

their hidden sensitivity to contemporaneous temperature exposure.

Second, this paper adds to the small body of research uncovering seasonality of the macroe-
conomy (Barsky and Miron (1989); Beaulieu and Miron (1992)) and employment (Coglianese
and Price (2025); Price and Wasserman (2024); Geremew and Gourio (2018)). A unified theme
of the literature is that routinely smoothed away seasonal statistics has a substantial real-world
implication. None of these analyzed unemployment. Despite the conventional view that un-
employment seasonality is a stable, recurring cycle that can be smoothed out, we find that
it is time-varying and generally shrinking, partly driven by climate change. In parallel with
the stability of the SA unemployment rate during Great Moderation after 1984 (see Gali and
Gambetti (2009)), our finding suggests that the de facto moderation in the NSA unemployment

rate was even greater.

Third, the proposed mechanism of climate-induced unemployment builds on empirical works
on productivity losses at the factory level (Chen and Yang (2019); Zhang et al. (2018); Cachon
et al. (2012); Somanathan et al. (2021)) and the worker level (efficiency damage for Borg et al.
(2021); Hancock et al. (2007)); shrinking hours of work for Ireland et al. (2025); Graff Zivin and
Neidell (2014)). We approach unemployment dynamics through employment flows, primarily
characterized by suppressed hiring at the state level. Our flow-based evidence complements
the burgeoning works on adaptations to climate change: employee reallocation by multi-county
firms (Acharya et al. (2023)), exits of small factories (Ponticelli et al. (2023)), capital deepening
and technological change (Xiao (2021); Ma (2025)). While consistent with this micro-level
evidence on firms, factories, and workers, our paper highlights regional labor demand dynamics

with nationwide implications for unemployment.?

3A notable recent exception, Kim et al. (2025) analyze the effects of temperature shocks on nationwide
macroeconomic statistics, including output, prices and unemployment rates. They employ a time-series method
to leverage intertemporal variation of the macro climate shocks, while we also exploit their intranational spatial
variation at the county level.

4The paper also belongs to the growing literature on climate and the macroeconomic outcomes (see Bilal



The remainder of the paper is structured as follows. Section 2 describes the key data sources
and our econometric framework. Section 3 presents the baseline results and robustness checks.
Then, we evaluate the role of climate change in the magnitude and dynamics of unemployment.
Section 4 explores the mechanism through employment flows. Section 5 discusses an implication

for unemployment insurance recipiency. Section 6 concludes. The Appendix reports additional

figures and tables (labeled with “A”).

2 Data and Model

2.1 Weather and Climate

We construct daily temperature at the county level, using weather station data from the
Global Historical Climatology Network Daily (GHCN-Daily), managed by the National Climatic
Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). The
GHCN-Daily database provides daily climate statistics, such as maximum and minimum daily
temperature, precipitation, and snowfall, from approximately 15,000 weather stations across
the U.S., offering a comprehensive climatic dataset with the highest frequency, resolution, and
quality since the 19th century. We use the data from stations with complete annual records
during 1950-2019.

County-level temperature. To aggregate station-level data to the county level, we employ an
inverse-distance weighting method (e.g., Barreca et al. (2016)). Specifically, we aggregate the
daily records of the three nearest weather stations to the county’s population centroid, weighted
by the inverse square of the distance from the centroid. Then, we construct an average daytime
temperature for each day d as a weighted average of the maximum and minimum temperature,
Le., Ty =wTP*>+ (1 —w)Ti". Instead of using w = 0.5 as is common in the climate literature,
we assign w = 0.75 in light of our focus on regular working hours, 8 am to 6 pm.> We find
a substantial geographical variation of exposure to climate change across counties even within
states (Figure A-2).

and Stock (2025) for a survey) such as growth (Dell et al., 2012; Colacito et al., 2019), income (Deryugina and
Hsiang (2014)), labor share (Qiu and Yoshida (2024)) and labor force participation (Yoshida (2025)).

5This calculation assumes a linear fluctuation of temperature between its minimum at 6 am and its maximum
at 1:30 pm.



2.2 Unemployment

Unemployment rate. We construct unemployment rates from both NSA and SA civilian un-
employment and employment (ages 16 and above) at the county-year-month level in the U.S.
mainland during 1990-2019 from the Local Area Unemployment Statistics (LAUS). The dataset
is produced by the Bureau of Labor Statistics (BLS) from the Current Population Survey, the

Current Employment Statistics (CES) survey, and state unemployment insurance (UI) systems.

Employment flows. We draw on local employment flows—job flows (creation and destruc-
tion) and worker flows (separations and hires)—at the county-industry-year-quarter level for
19 NAICS private industries over 1993-2019, using data from the Quarterly Workforce Indica-
tors (QWI). This dataset is constructed from the Longitudinal Employer-Houshold Dynamics
(LEHD) by the Census Bureau—employer-employee linked massive longitudinal microdata cov-

ering over 95% of U.S. private sector jobs.

Worker flows. We obtain worker flows of separations (divided into layoffs and quits) and hires
as well as job openings at the state-year-month level from December 2000 to December 2019 for
48 states plus D.C. from the Job Openings and Labor Turnover Survey (JOLTS). This dataset
is constructed from a monthly survey of approximately 21,000 U.S. business establishments in

all nonagricultural industries, collected by the BLS.

2.3 Seasonal Regularity in Unemployment

We codify the observed dynamic and spatial patterns of seasonal unemployment into three

stylized facts (Facts 1-3), which we then empirically relate to extreme temperature.

Fact 1: Unemployment rate spikes in the summer (Q3) and winter (Q1) quarters. Figure
2al illustrates the nationwide changes in the seasonal unemployment rate before and after
the recessionary peak in 1984, computed as the difference between the BLS-based NSA and
SA unemployment rates. Traditionally, the nationwide unemployment rate spikes in January
from the previous December, presumably reflecting the end of annual contracts in fiscal years
and holiday shopping seasons. A notable pattern is the spike in unemployment from May to
June, the onset of summer, coinciding with graduation and summer breaks when high school
or college students search for jobs. Especially since 1984, the June spike has been followed by
a more gradual decline, with unemployment remaining elevated through Q3. Taken together,
the unemployment rate surges in winter (Q1) and summer (Q3) quarters, when temperatures
hit their lowest and highest.


https://www.bls.gov/lau/
https://www.census.gov/data/developers/data-sets/qwi.html
https://www.bls.gov/jlt/

Fact 2: Hotter (colder) states experience a larger increase in summer (winter) unemploy-
ment. Taking a spatial perspective, Figure 2c examines the climate-unemployment dynamics
across states, split between summer and winter over 1990-2019. In the summer, hotter states
(e.g., Florida, Arizona, and Texas) experienced a larger increase (or a smaller decrease) in
unemployment rates relative to colder states (e.g., Minnesota, Michigan, and Wisconsin). In
contrast, in the winter, colder states experienced a larger increase in unemployment rates rel-
ative to hotter states.® Both relationships are consistent with our proposition that seasonal

climate shocks raise regional unemployment rates.

Fact 3: Unemployment seasonality has been shrinking. The magnitude of the seasonal com-
ponent of the monthly unemployment rate consistently shrinks over time (Figure 1a). Within
a year, Figure 2a shows that this declining seasonal volatility largely reflects a steady fall in
Q1 unemployment (Jan—-Mar) and a gradual rise in Q3 unemployment (Jul-Sep). This pat-
tern of unemployment dynamics aligns well with climate change, marked by fewer cold days
in Q1 and more hot days in Q3 (Figure 2b). Intriguingly, we find that the shrinkage of un-
employment seasonality is observed not only in the U.S., but also in Canada, Germany, and,
more broadly, across OECD countries (Figure A-4), spanning diverse institutional settings and
climatic conditions—suggestive of a role for global warming. Overall, Figure 2 summarizes

dynamic and spatial variation as sources of identification, which we formally implement below.”

2.4 Model

To test climate-induced unemployment, we build and estimate the baseline model that relates
county-level monthly NSA unemployment rates to climate exposure, with two-way fixed effects.

Specifically, for county [ in year ¢t € {1990, --- ,2019} and month m € {1,--- 12}, we run:

UnempRate; , ,,, = Z ﬂbdayszt’m +AC ¢+ 6+ O + ELtm, (1)
be{l,- 10,13, ,16}

where UnempRate, ; ,, is county [’s unemployment rate in year ¢ and month m. daysi”t’m is a
number of days falling into 5°F temperature bin indexed by b € {1,---,10,13,--- 16} in month
m, where the missing 11th and 12th bins (65-75°F) are set as benchmarks.® We also control for

6A positive link is also observed across commuting zones (Figure A-5).

"We find that the seasonality of employment-to-population ratio mirrors Fact1-3 (Figure A-6).

8We use 65-75°F as the benchmark temperature range for three reasons. First, OSHA recommends tem-
perature control in the range of 68-76°F for indoor workplaces. Second, Chen and Yang (2019) find that
establishment-level industrial output declines when the daily temperature exceeds 24°C (75.2°F). Finally, a
clear jump in the estimated temperature effect at 75°F ensures that temperatures above this threshold are
sufficiently “hot” relative to the benchmark.


https://www.osha.gov/node/57113

Figure 2: Climate Change and Seasonal Unemployment in the U.S.
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rainy days in additional climate covariates C;; ., and county fixed effects §;. The year-month
fixed effects ¢, ,,, capture any time-varying nationwide shocks (e.g., business cycles, technological
change, and free trade) as well as monthly calendar effects (e.g., fiscal-year contracts). The
regression is weighted by the logarithm of labor force of each county and standard errors are
clustered at the commuting-zone (i.e., superset of neighboring counties) level.” Presuming that
temperature shocks are unconditionally random, 3° captures the effect of ten days in each bin,
relative to ten benchmark-temperature days of 65-75°F. While we rely on the simplest one-
month treatment window to estimate contemporaneous temperature effects, we also consider
an augmented model that incorporates lagged effects from prior months, thereby quantifying

cumulative impacts over time (Section 3.2).

3 Results

Semi-parametric bin models. Figure 3al illustrates our baseline results. The red line of the
top figure plots the U-shaped response of the NSA unemployment rate to each temperature bin
of 10 days with 95% confidence intervals. On average, a 10-day increase of hot days (>75°F)
or cold days (<50°F) per month increases the unemployment rate by 0.2-0.3 percentage points
(pp).!° Importantly, we find largely muted effects on the commonly-used SA unemployment
rate, suggesting that our estimates predominantly capture within-year seasonal impacts (Figure
3a2). Additionally, consistent with the U-shaped estimates, we also find that the effects are
amplified in historically hot (e.g., Southeast) and cold (e.g., Northeast) regions that are more

exposed to extreme temperature (Table A-6).

Figure 3b analyzes the responses of unemployment, employment, and out of the labor force
separately, expressed as ratios to the population.!* The decline in employment is roughly twice
as large as the increase in unemployment, implying that about half of employment separations
translate into exits from the labor force—likely reflecting quits by employed workers (including
temporary seasonal workers) as well as labor force withdrawal among discouraged unemployed

workers.

9We find that the estimates are robust against alternative clustering options (Figure A-9).

10We find that precipitation or snowfall significantly raises unemployment, likely reflecting disruptions to
business operations (Table A-3).

HBecause the county-level monthly data on the out-of-labor-force population are unavailable, we impute the
series as the difference between the annualized population (ages 15+) from the SEER data and the monthly
labor force (ages 16+) from the BLS.

10


https://seer.cancer.gov/popdata/

(a) Temperature Shocks Predominantly Elevate Unadjusted Unemployment Rates

Figure 3: Temperature Shocks and Unemployment

Effects of Temperature Exposure on Unemployment Rate (pp):
10 Days in each Temperature Bin (Relative to 65-75°F)
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Notes: Unit of analysis: counties x years x months. Eq.(1) is estimated with different outcome
variables. Rainy days are controlled for, along with county fixed effects and year-month fixed effects.
The regressions are weighted by the log of labor force. Dotted lines are 95% confidence intervals,
constructed from standard errors clustered by commuting zone. Bins with 65-75°F are set as the
benchmark. An unemployment rate is computed using county-level NSA and SA monthly unemploy-
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3.1 Robustness

Fixed effects. The baseline model (Eq.(1)) adopts the standard two-way (county and year-
month) fixed effects. The granularity of the data permits an inclusion of county-by-year fixed
effects 0;; rather than county fixed effects §;. The temperature estimates remain largely un-
changed, suggesting that they primarily reflect within-year seasonal impacts—consistent with
the very modest estimates when the SA unemployment rate is used (Figure 3a2). Controlling for
state-by-year fixed effects produces similar temperature estimates, suggesting that time-varying
institutional factors (e.g., UI, minimum wage, and unionization) do not critically confound the
estimates. We try reasonable alternative combinations of fixed effects, but the estimates remain
broadly stable (Figure A-7; Table A-2).

Additional weather variables. The baseline model (Eq.(1)) includes monthly rainy days in
additional weather variables, C;,,. We consider a reasonable alternative set of weather vari-
ables consisting of rainfall, snowfall, and humidity, but the temperature estimates are broadly
preserved. Replacing hot days by “uncomfortable days”, defined as days with a heat index above
80°F that interact temperature with relative humidity, yields larger and more precise estimates,
consistent with the mechanism of declining labor efficiency due to thermal stress (Figure A-8;
Table A-3).

Two-tailed models under alternative temperature cutoffs. To ensure tractability in testing
the mechanism and to retain sufficient precision for impact quantification, we introduce a sim-
plified two-tailed models:'?

UnempRate; ; ,, = B"dytm + Bism + ACptm + 61 + Otan + Lt (2)

where hd;;,,, and cd;;,,, denote hot and cold days, defined as days with average working-hour
temperatures above 75°F and below 50°F, respectively, guided by the U-shaped estimates in
Figure 3al.'® We obtain " = 0.240 (s.e. 0.026) and 3¢ = 0.248 (s.e. 0.026), both precisely esti-
mated. Importantly, the coefficients remain statistically significant across alternative reasonable
temperature cutoffs (Table A-1).

Two-tailed models with lagged weather variables. As unemployment is potentially affected

by climate shocks from previous months, we examine cumulative lag specifications from 0 to M

12A two-tailed model has been a standard, tractable complement to binned models in the climate literature,
as in Barreca et al. (2016) and Somanathan et al. (2021).

I3Note that these cutoffs are constructed based on the average temperature during working hours, with the
corresponding maxima and minima are higher and lower, respectively.

12



months (M € {0,---,5}) and find significant lagged estimates, indicating cumulative nature of
temperature effects operating within a seasonal time window (Table A-4). This finding cautions
against the widely used practice of moving-average smoothing (e.g., over a quarter or half year)
for seasonal adjustment of unemployment rates, as lagged effects of past climate shocks remain
embedded in the smoothed series (Table A-5).

3.2 Quantitative Assessment

Climate-induced unemployment. Having established the link between temperature and unem-
ployment, we quantitatively assess how exposure to regional extreme temperatures contributes
to nationwide non-seasonally-adjusted (NSA) unemployment over the study period, 1990-2019.
Because current unemployment may reflect climate shocks from preceding months through fric-
tions in labor demand adjustment, we employ estimates from a two-tailed lagged model with
a quarterly time window—corresponding to lags of up to two months—for hot, cold, and rainy
days (see Column 3 of Table A-4, introduced above at Section 3.1).'4

We construct the counterfactual scenario in which all the days fell into normal (non-hot, non-
cold) days, and measure the resulting gap between the simulated and empirical unemployment
series. Figure 4a illustrates the simulated impacts of extreme temperature days over 1990-2019.
Reflecting larger and more persistent lagged effects of hot days (Table A-4), the aggregate
impact is primarily driven by the surge in summer unemployment. We also find a pronounced
regional heterogeneity: Southern states experience larger impacts from hot days in summer,

while Northern states face larger impacts from cold days in winter.!®

The back-of-the-envelope calculation suggests that temperature is a non-negligible driver of
unemployment: absent extreme temperature days, the NSA unemployment rate during non-
recessionary periods over 2000-2019 would have been 11.4% lower, while the corresponding
reduction in the SA series is only 0.42%.'% Under a quarterly treatment window, the magnitude
remains robust, ranging from 10 to 13%, across protocols (Figure A-11). The contribution of
extreme temperatures exhibits substantial seasonal dispersion, ranging from 7.6% in May to

17.8% in September. Because our model does not explicitly incorporate natural disasters (e.g.,

Because simulated temperature impacts expand with wider treatment windows—albeit with less precise
estimates at longer lags (Table A-4)—we view this exercise as providing a reasonable lower bound on extreme
temperature effects.

15Southern states comprise 18 states across the Southeast, South, Southwest and West, accounting for nearly
half of the nationwide labor force over 2000-2019.

16Because baseline cold-day effects on the SA series cannot be statistically distinguished from zero, we only
include hot-day effects (Table A-1).
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hurricanes, arctic blasts, wildfires)!”, which are partially captured by precipitation measures,'®

we regard our estimates as a reasonable lower bound on climate-induced unemployment.

Climate change and unemployment dynamics. Given the tangible role of extreme tempera-
tures in regional unemployment, we next address our central question: how the acceleration of
climate change since 2000 has reshaped nationwide unemployment. Using the two-tailed lagged
model with a quarterly treatment window (Column 3 of Table A-4), we simulate the counter-
factual climate impacts across decades—1980s, 1990s, 2000s, 2010s—by keeping the weather

exposure fixed at its pre-warming (1950-1979) average to gauge the impacts of climate change.

Figure 4b illustrates the results. We find that a rising frequency of hot days elevates un-
employment throughout the year, with the strongest effects in the summer quarter (Q3). By
contrast, fewer cold days modestly reduce unemployment. Relative to the 1950s-1970s bench-
mark, fewer cold days over 2000-2019 reduce winter (Q1) unemployment by 0.022 pp. but more
hot days raise summer (Q3) unemployment by 0.044 pp—equivalent to about 36,000 fewer and
72,000 more unemployed workers, respectively, when evaluated using 2019 labor force levels.
As a consequence of this “horse race” between harsher summers and milder winters, the annual
net effect of climate change has turned positive: roughly 30,000 additional unemployed workers,
evaluated at 2019 (Figure A-12).

Guided by Figure 2, we hypothesize that harsher summers and milder winters may help ex-
plain the declining volatility in NSA unemployment by raising the floor and lowering the ceiling,
respectively. We then assess how much climate change accounts for the decline in monthly NSA
unemployment fluctuations. Running the same exercise, we compute that the climate change
since the 1950s-70s explains 5.6% of the shrinking variance of the NSA unemployment rate over
2000-2019 (see Figure A-11 for robustness).'

As Figure 4b illustrates, the unemployment-augmenting impacts of hot days accelerate over
time, whereas the unemployment-reducing effects from fewer cold days remain limited; by the
2010s, even in Q1, these benefits were nearly offset by hot days. Consistently, we find little
evidence of dynamic acclimatization (Table A-7). Looking ahead, projections of global warming
(IPCC (2023)) suggest that summer unemployment will continue to rise, potentially reversing

the long-run moderation in seasonality and amplifying unemployment volatility.?

1"Natural disasters are known to trigger unemployment, as documented in labor market studies of hurricanes
(Groen and Polivka (2008); Belasen and Polachek (2008)) and tornadoes (Riesing (2018)).

18When aggregate nationwide, rainy days conditional on extreme temperature days consistently explains
roughly 6% of NSA unemployment rate.

19Geveral alternative mechanisms may contribute to the remaining decline in seasonal volatility—including
the growing non-seasonal service economy and the diffusion of air conditioning—but uncovering these channels
remains an open question.

20A pronounced spike in summer unemployment has already been observed in the UK in the new century
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Figure 4: Simulated Impacts on Unemployment

(a) Impacts of Extreme Temperatures on the Unemployment Rate (over 1990-2019)
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Notes: Simulations are based on a two-tailed model that includes hot days (>75°F) and cold days
(<50°F) with lags of up to two months (Column 3 of Table A-4). An analogously lagged series of
rainy days is controlled for, along with county fixed effects and year-month fixed effects. Regressions
are weighted by the log of labor force. Panel (a): Monthly exposure to hot days and cold days over
2000-2019 is aggregated using a weighted sum with the vector of lagged coefficients. Southern states
include the Southeast (VA, NC, SC, GA, AL, FL), South (TX, LA, MS, AR, OK, KS), Southwest (AZ,
NM, UT, CO) and West (CA, NV). Northern states comprise the remaining contiguous U.S. states,
including D.C. Panel (b): Period-specific differences in average monthly exposure to hot and cold
days relative to 1950-1979 are aggregated using a weighted sum with the vector of lagged coefficients.
Decades are defined as 1980-1989 (1980s), 1990-1999 (1990s), 20002009 (2000s), and 2010-2019
(2010s).
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4 Mechanism

Conceptual framework. To illuminate the channels through which extreme temperatures
reshape unemployment dynamics, we outline a conceptual framework. First, on the firm
side, weather-sensitive technologies reduce labor efficiency—via fatigue (Gonzélez-Alonso et al.
(1999)), operational errors (Mazloumi et al. (2014)), absenteeism (Somanathan et al. (2021)),
and workplace injuries (Park et al. (2021))—and reduce non-labor-related productivity by trig-
gering supply-chain delays (Cachon et al. (2012)), electricity shortages (Adhvaryu et al. (2020)),
and machine failures (Garimella and Hughes (2023)). These shocks directly lower labor demand,
manifested as fewer vacancy postings and higher layoffs. Second, on the worker side, climate
shocks increase thermal discomfort and reservation wages, leading to quits, a small portion of
which flow into unemployment (Elsby et al. (2011)). Third, at the labor market level, matching
probabilities decline as the market becomes slacker (i.e., vacancies fall relative to unemploy-

ment). We investigate these channels through the lens of employment flows below.

Employment flows within counties and sectors. To track climate-induced unemployment in-
flows and outflows, we examine the dynamics of employment flows. Using the QWI, we study
the responses of county-level quarterly job flows across eight sectors (agriculture, mining, con-
struction, manufacturing, transportation, retail, low-skilled service, and high-skilled service)

over 1993-2019. Building on the two-tailed specification, Eq.(2), we estimate the following

model for county [, sector i, year ¢, and quarter ¢ € {1,--- ,4}:
A Ly,
ot = i + Bedisg + ACuug + 81+ 0t + St (3)
7i7t7q

where the outcome variable is an employment flow, A L;;, 4, relative to the start-of-quarter em-
ployment, E;;:,. hd;;, and cd;;, are hot and cold days per quarter in county [, respectively,
and the additional weather variable, C;;,, includes rainy days per quarter. The regression is
weighted by log(E;;.,) and standard errors are clustered by state. Given the two-way fixed
effects (0;; and d;,), " and B¢ respectively captures the effects of hot and cold days on em-

ployment flows, relative to normal (non-hot, non-cold) days.

Table 1a reports the estimates. Column 1 shows that 10 hot days per quarter reduce employ-
ment growth by —0.381 percentage points (pp). Consistently, columns 2-3 show that hot days
significantly reduce job creation and increase job destruction; however, the contraction in job

creation (—0.353 pp) is an order of magnitude larger than the rise in job destruction (+0.027

(Figure A-4). A quantitative forecast of future unemployment is beyond the scope of this paper, as it requires
a number of assumptions regarding climatic projections, demographic trends and the stability of institutional
rules.
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Table 1: Extreme Temperature and Quarterly Labor Market Dynamics

(a) Employment Flows at the County-Sector Level (QWI, 1993-2019)

Dependent variables (percent of start-of-quarter employment (0-100 pp))

Emp. Flow Job Flow Worker Flow
Job Worker
AEmp. Creation Destruction Turnover Hires  Separations Turnover
2) + () (5) + (6)
(1) 2 3) 4) (5) (6) (7)
Descriptive statistics (0-100 pp; mean (sd))
2.33 6.35 4.02 10.37 23.2 20.86 44.06
(4.71) (5.02) (1.44) (5.69) (12.09) (9.45) (21.18)
10 hot days —0.381 —0.353 0.027 —0.326 —0.327 0.054 —0.272
per quarter (0.047) (0.047) (0.005) (0.047) (0.081) (0.045) (0.122)
10 cold days —0.049 —0.104 —0.056 —0.160 —0.423 —0.375 —0.798
per quarter (0.039) (0.039) (0.004) (0.039) (0.076) (0.047) (0.120)
county X sector FEs Yes Yes Yes Yes Yes Yes Yes
year x quarter FEs Yes Yes Yes Yes Yes Yes Yes
Adjusted R? 0.468 0.513 0.545 0.552 0.573 0.563 0.581

(b) Worker Flows and Matching within States (JOLTS, 2001-2019)

Dependent variables (percent of end-of-pre-quarter employment (0-100 pp))
Worker—Firm Matching

‘Worker Flow

Separations Job Unemploy Market
Hires Total Layoffs Quits  openings -ment Tightness
(5)/(6)
(1) 2) 3) 4) (5) (6) (7)
Descriptive statistics (0-100 pp; mean (sd))
10.62 10.46 4.11 5.61 9.54 6.54 1.75
(2.10) (1.86) (0.81) (1.31) (1.58) (1.38) (0.53)
10 hot day —0.214 0.132 0.076 0.058 —0.131 0.039 —0.054
per quarter (0.086)  (0.034) (0.017) (0.021) (0.053) (0.021) (0.017)
10 cold days —0.101  —0.062 —0.005 —0.057 —0.031 0.061 —0.025
per quarter (0.071)  (0.030) (0.015) (0.017) (0.036) (0.018) (0.011)
state FEs Yes Yes Yes Yes Yes Yes Yes
year x quarter FEs Yes Yes Yes Yes Yes Yes Yes
Adjusted R? 0.880 0.894 0.793 0.904 0.917 0.855 0.835

Notes: Panel (a) N = 451,647. Unit of analysis: counties X sectors x years X quarters. Sectors consist
of agriculture, mining, construction, manufacturing, transportation, retail, low-skilled service, and high-skilled
service. Low-skill services include education, health, leisure and hospitality, and other services. High-skill
services include information, business services, finance, and utilities. Eq.(3) is estimated using hot days (>75°F)
and cold days (<50°F). Rainy days per quarter are controlled for. The regressions are weighted by the log
of start-of-quarter employment; standard errors clustered by commuting zone. Panel (b) N = 3,724. Unit of
analysis: states x years x quarters. Eq.(4) is estimated using hot days (>75°F) and cold days (<50°F). Rainy
days per quarter are controlled for. The regressions are weighted by the log of end-of-pre-quarter employment;
standard errors are clustered by state.
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pp). By contrast, cold days suppress both job creation and destruction. On a net basis, hot
and cold days hurt job creation (column 2) and job turnover (column 4). Analogously, Columns
5-6 respectively indicate significantly reduced hires and weakly positive (though statistically in-
significant) changes in separations in response to hot days.?! These results suggest that reduced

job creation and hiring increase unemployment by dampening exits from unemployment.

Worker flows within states. We complement the analysis with worker flows obtained from
JOLTS, which provides statewide layoffs, job openings, and quits to directly proxy labor demand
and supply. Using the JOLTS data from 2001-2019 for 48 states and D.C., we estimate the

following counterpart of Eq.(3) for state s in year ¢t and quarter g¢:

AL,

E = ﬁhhds’t’q + BCCdsyt’q + ACs,t,q + (55 + 5t,q + Esit,q- (4)
s,t,q

where the outcome variable is a quarterly worker flow, AL, ,, relative to the start-of-quarter
employment (proxied by the end-of-previous-quarter employment), E;;,, and other notations
follow Eq.(3).%> Columns 1-4 of Table 1b report the results. We find that hot days significantly
reduce hires (column 1) and fuel both layoffs and quits (columns 2-4), suggesting that both
labor demand and supply shrink in response. Although these worker flows include job-to-
job flow and transition to out-of-labor-force, we find that less hires (—0.214 pp), more layoffs
(40.076 pp), and quits (+0.058 pp) are more likely to contribute to smaller outflows from and
larger inflow into unemployment. These results quantitatively suggest that the heat impact
primarily operates through the labor demand side. Cold days noticeably decrease both hiring

and quits, slowing worker reallocation.

Replacing worker flows ALg,, in the model in Eq.(4) with market-level state variables,
columns 5-7 in turn analyze the worker—firm matching. Column 5 shows that hot days re-
duce job openings, indicating a contraction in labor demand. Driven largely by fewer hires,
Column 6 shows that both hot and cold days increase unemployment. Taken together, Column
7 shows that extreme temperatures reduce the labor market tightness, lowering unemployed

workers’ job-finding probabilities and slowing exits from unemployment.

21Job creation/destruction capture establishment-level changes in job positions, whereas hires/separations
reflect worker-level flows into and out of jobs (Davis et al. (1996))—when five workers separate and five are
hired within the same establishment, job creation and destruction remain zero. See Appendix IV for formal
definitions of each proxy.

22 Analogous to Eq.(3), Cs.,q includes rainy days per quarter. The regression is weighted by log(Es ¢ ,) and
standard errors are clustered by state.
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5 Consequences for Unemployment Insurance

Established in the aftermath of the Great Depression in the 1930s, the U.S. unemployment
insurance (UI) system has provided roughly 50% wage replacement for around 26 weeks for
the eligible unemployed workers, where its benefit generosity—covering eligibility, replacement
ratio, monitoring rules, and maximum duration—is regulated primarily at the state level.?
The UI program constitutes a sizable fiscal system, with annual expenditures of $30 billion,
surpassing those of federal safety-net programs such as Temporary Assistance to Needy Families
(TANF) and Food Stamps. Tracking the climate sensitivity of Ul recipiency is not only valuable
for quantifying the fiscal externalities of unemployment, but it is also informative about the
mechanism of climate-damaged labor demand, given that Ul receipt begins with job losses that

are through “no fault of their own”.

This section estimates the climate effects on Ul recipiency across states, and examines the
nationwide implications of climate change. We construct the statewide monthly insured unem-

ployment rate, InsuredUnempRate in state s, year t, and month m, defined as Ul receipts

s,t,m»
divided by Ul-covered employment (see e.g., FRED). The data are drawn from the adminis-
trative UI records over 19902019, provided by the Employment and Training Administration

(ETA) of the U.S. Department of Labor. We estimate the following model:
InsuredUnempRate, ; ,,, = B"d, g + By im + ACsim + s + Ot + Estm) (5)

where notations follow the previous models, Eq.(1)—(4); for example, Cs; ,, includes rainy days.
The regression is weighted by the logarithm of monthly Ul-covered employment, and standard

errors are clustered by state.

We find that key temperature estimates are both precisely estimated as 5" = 0.105 (s.e. 0.034)
and ¢ = 0.292 (s.e. 0.027). This implies that additional 10 hot days per month increase the in-
sured unemployment rate by 0.11 percentage points (pp), while 10 cold days increase it by 0.29
pp (relative to a mean of 2.28%). We also find analogously significant effects for claimed weeks,
compensated weeks and total benefits paid (Table A-8). The estimates are strongly robust to
replacing state fixed effects, o5, with state-year fixed effects, 5, suggesting that Ul extensions
or relaxed eligibility triggered by regional unemployment rates are less likely to confound the
estimates. Given that UI eligibility requires involuntary job loss, the findings are consistent

with a contraction in labor demand, as suggested earlier in Table 1.

Notably, the sensitivities of Ul-related outcomes with cold days are broadly three to five

times larger than those with hot days (Table A-8), whereas the corresponding estimates for

2For background on cross-state unemployment insurance (UI) institutions, see e.g., Nicholson and Needels
(2006), Auray et al. (2019) and Rujiwattanapong (2024).
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unemployment rates are nearly identical (Table A-1). Albeit partially speculative, we offer two
complementary explanations. First, summer unemployment disproportionately reflects seasonal
job losses among part-time and lower-earning workers (e.g., construction laborers)—who are less
likely to be Ul-eligible or receive generous benefits—whereas winter unemployment more often
arises from the nonrenewal of annual contracts among full-time, higher-earning workers (e.g.,
business professionals). Consistent with this pattern, insured unemployment exhibits a much

sharper spike from November to January than from June to August (Figure A-13b).

Second, although identification relies on within-state variation, the hot- and cold-day coef-
ficients are primarily informed by geographically distinct sets of states. The UI responses to
cold days are driven by Northern states with more generous Ul systems (e.g., New Jersey, Mas-
sachusetts). By contrast, the identification of the hot-day effects relies disproportionately on
Southern states where Ul responses are attenuated under less generous benefit regimes (e.g.,
Florida, Arizona) (Figure A-13a).

Analogous to the earlier quantitative exercise for unemployment (Section 3.2), we next quan-
tify how climate exposure and its long-run change have shaped insured unemployment, allowing
for up to two months of lagged effects. Reflecting greater Ul sensitivity to cold days, the impacts
are concentrated in the fall and winter (Q4/Q1) and generally larger in Northern states than
in Southern states (Figure A-14a)—revealing opposing temperature sensitivities that shape

unemployment and Ul dynamics (recall Figure 4a).

Overall, we find that the temperature warming since the 1950s—70s has reduced insured
unemployment over 2000-2019 through milder winters, while increasing it through harsher
summers. As these opposing forces counteract each other, the net impact of climate change
is close to zero (Figure A-14b). However, Ul-augmenting summer effects have expanded more
rapidly than winter-related reductions. Taken together, the projected warming is therefore
likely to raise insured unemployment—and the associated fiscal burden—through intensifying

summer unemployment.

6 Conclusion

Since the pre-industrial era, economic activities have been hampered by the lottery of Mother
Nature, including droughts, floods, and the pandemic (Diamond (1999)). Despite its dominant
role of within-year fluctuation and real-world implications, little is known about unadjusted
high-frequency unemployment dynamics, partly because they are routinely subjected to sea-
sonal adjustment. Using a newly created panel dataset of the U.S. counties, we show that

unemployment rates are highly responsive to climate shocks that vary across time and space,
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operating primarily through reduced hiring. Aggregating these spatial impacts, our analysis
yields a macroeconomic implication of climate change for the secular decline in labor market

dynamism.

In light of forecasts of accelerated warming, our findings suggest that summer unemployment
is likely to continue rising—an emerging dynamic that cannot be inferred from the standard
seasonally-adjusted statistics. In the short run, these forecasts call for strengthened job secu-

2 including Ul extensions, public jobs under climate-

rity measures, targeted in the summer,
controlled environments (e.g., Summer Youth Employment Program (Gelber et al. (2016))),
and liquidity support to prevent layoffs in heat-exposed industries. In the long run, contin-
ued technological development (e.g., air conditioning) will be essential to shield workers from

worsening heat shocks (Hotte and Jee (2022)).

We also encourage forecasters to explicitly incorporate weather forecasts into simulation mod-
els to improve predictions of unemployment and employment outcomes, especially when heat
waves or droughts can be forecast with reasonable accuracy. While summer unemployment is
projected to rise in the coming decades, heightened climate risk associated with unprecedented
events (e.g., hurricanes, arctic blasts, wildfires) may further amplify unemployment risk. We

leave the role of rising climate uncertainty for future work.

24In the ancient Egypt, summer flooding of the Nile River created an abundance of unemployed workers. Some
historians argue that the kingdom provided pyramid construction as a form of job security (Butzer (1976)).

21



References

Acemoglu, Daron and Pascual Restrepo, “Robots and Jobs: Evidence from US Labor Markets,”
Journal of Political Economy, 2020, 128 (6), 2188-2244.

Acharya, Viral V, Abhishek Bhardwaj, and Tuomas Tomunen, “Do Firms Mitigate Climate
Impact on Employment? Evidence from US Heat Shocks,” Working Paper 31967, National

Bureau of Economic Research December 2023.

Adhvaryu, Achyuta, Namrata Kala, and Anant Nyshadham, “The light and the heat: Pro-
ductivity co-benefits of energy-saving technology,” Review of Economics and Statistics, 2020,

102 (4), T79-792.

Auray, Stéphane, David L. Fuller, and Damba Lkhagvasuren, “Unemployment insurance take-

up rates in an equilibrium search model,” Furopean Economic Review, 2 2019, 112, 1-31.

Autor, David H., David Dorn, and Gordon H. Hanson, “The China Syndrome: Local Labor
Market Effects of Import Competition in the United States,” American Economic Review,
October 2013, 103 (6), 2121-68.

Barreca, Alan, Karen Clay, Olivier Deschenes, Michael Greenstone, and Joseph S Shapiro,
“Adapting to Climate Change: The Remarkable Decline in the US Temperature-mortality
relationship over the Twentieth Century,” Journal of Political Economy, 2016, 124 (1), 105
159.

Barsky, Robert B. and Jeffrey A. Miron, “The Seasonal Cycle and the Business Cycle,” Journal
of Political Economy, 1989, 97 (3), 503-534.

Beaulieu, J. Joseph and Jeffrey A. Miron, “A Cross Country Comparison of Seasonal Cycles
and Business Cycles,” Economic Journal, 1992, 102 (413), 772-788.

Belasen, Ariel R and Solomon W Polachek, “How hurricanes affect wages and employment in
local labor markets,” American Economic Review, 2008, 98 (2), 49-53.

Beveridge, William Henry, Causes and Cures of Unemployment, London: Longmans, Green
and Co., 1931. Based on six radio talks delivered May—June 1931.

Bilal, Adrien and James H. Stock, “A Guide to Macroeconomics and Climate Change,” NBER
Working Paper 33567, National Bureau of Economic Research 2025.

Black, Dan, Terra McKinnish, and Seth Sanders, “The economic impact of the coal boom and
bust,” The Economic Journal, 2005, 115 (503), 449-476.

22



Borg, David N., George Havenith, Shane K. Maloney, Yan Hong, and Ollie Jay, “Occupational
heat stress and economic burden: A review of global evidence,” The Lancet Planetary Health,
2021, 5 (8), e572-eb81.

Butzer, Karl W., Farly Hydraulic Civilizations in Eqypt: A Comparative Perspective, Chicago:
University of Chicago Press, 1976.

Cachon, Gerard P, Santiago Gallino, and Marcelo Olivares, “Severe Weather and Automobile
Assembly Productivity,” Technical Report 2012.

Chen, Xiaoguang and Lu Yang, “Temperature and Industrial Output: Firm-level Evidence

from China,” Journal of Environmental Economics and Management, 2019, 95, 257-274.

Chodorow-Reich, Gabriel, John Coglianese, and Loukas Karabarbounis, “The macro effects
of unemployment benefit extensions: a measurement error approach,” The Quarterly Journal
of Economics, 2019, 134 (1), 227-279.

Coglianese, John M and Brendan M Price, “Income in the off-season: Household adaptation

to yearly work interruptions,” Industrial & Labor Relations Review, 2025.

Colacito, Riccardo, Bridget Hoffmann, and Toan Phan, “Temperature and Growth: A Panel
Analysis of the United States,” Journal of Money, Credit and Banking, 2019, 51 (2-3), 313—
368.

Davis, Steven J., John C. Haltiwanger, and Scott Schuh, Job Creation and Job Destruction,
Cambridge, MA: MIT Press, 1996.

Dell, Melissa, Benjamin F Jones, and Benjamin A Olken, “Temperature Shocks and Economic
Growth: Evidence from the Last Half Century,” American Economic Journal: Macroeco-
nomics, 2012, 4 (3), 66-95.

_,_ yand _ , “What Do We Learn from the Weather? The New Climate-Economy Literature,”
Journal of Economic Literature, 2014, 52 (3), 740-98.

Deryugina, Tatyana and Solomon M Hsiang, “Does the Environment Still Matter? Daily Tem-
perature and Income in the United States,” Technical Report, National Bureau of Economic
Research 2014.

Diamond, Jared, Guns, Germs, and Steel: The Fates of Human Societies, New York: W. W.
Norton & Company, 1999.

23



Eliason, Marcus and Donald Storrie, “Job loss is bad for your health—Swedish evidence on

cause-specific hospitalization following involuntary job loss,” Social science & medicine, 2009,
68 (8), 1396-1406.

Elsby, Michael WL, Bart Hobijn, Aysegiil Sahin, Robert G Valletta, Betsey Stevenson, and
Andrew Langan, “The Labor Market in the Great Recession—an update to September 2011
[with comment and discussion|,” Brookings Papers on Economic Activity, 2011, pp. 353-384.

Furceri, Davide, Swarnali A Hannan, Jonathan D Ostry, and Andrew K Rose, “Macroeco-
nomic consequences of tariffs,” Technical Report, National Bureau of Economic Research
2018.

Gali, Jordi and Luca Gambetti, “On the sources of the great moderation,” American Economic
Journal: Macroeconomics, 2009, 1 (1), 26-57.

Garimella, Suresh V. and Matt Hughes, “Physicists Explain How Heat Kills Machines and
Electronics,” Scientific American, September 5 2023.

Gathmann, Christina, Ines Helm, and Uta Schonberg, “Spillover effects of mass layoffs,” Jour-
nal of the European Economic Association, 2020, 18 (1), 427-468.

Gelber, Alexander, Adam Isen, and Judd B Kessler, “The effects of youth employment: Ev-
idence from New York City lotteries,” The Quarterly Journal of Economics, 2016, 131 (1),
423-460.

Geremew, Menelik and Francois Gourio, “Seasonal and Business Cycles of U.S. Employment,”
Economic Perspectives, Federal Reserve Bank of Chicago, 2018, 42 (3), 1-28.

Gonzalez-Alonso, José, Christina Teller, Signe L Andersen, Frank B Jensen, Tino Hyldig,
and Bodil Nielsen, “Influence of body temperature on the development of fatigue during
prolonged exercise in the heat,” Journal of applied physiology, 1999, 86 (3), 1032-1039.

Groen, Jeffrey A and Anne E Polivka, “The effect of Hurricane Katrina on the labor market

outcomes of evacuees,” American Economic Review, 2008, 98 (2), 43-48.

Gruber, Jonathan, “The Consumption Smoothing Benefits of Unemployment Insurance,” Amer-
ican Economic Review, 1997, 87 (1), 192-205.

Hancock, Peter A, Jennifer M Ross, and James L Szalma, “A meta-analysis of performance
response under thermal stressors,” Human factors, 2007, 49 (5), 851-877.

Hodrick, Robert J and Edward C Prescott, “Postwar US business cycles: an empirical inves-

tigation,” Journal of Money, credit, and Banking, 1997, pp. 1-16.

24



Hotte, Kerstin and Su Jung Jee, “Knowledge for a warmer world: A patent analysis of climate
change adaptation technologies,” Technological Forecasting and Social Change, 2022, 1883,
121879.

IPCC, Climate Change 2023: Synthesis Report, Geneva, Switzerland: Intergovernmental Panel
on Climate Change, 2023. Contribution of Working Groups I, IT and III to the Sixth Assess-

ment Report of the Intergovernmental Panel on Climate Change.

Ireland, Andrew, David Johnston, and Rachel Knott, “Impacts of Extreme Heat on Labor

Force Dynamics,” 2025. Revise and Resubmit, Journal of Labor Economics.

Kim, Hee Soo, Christian Matthes, and Toan Phan, “Severe Weather and the Macroeconomy,”

American Economic Journal: Macroeconomics, April 2025, 17 (2), 315-41.

Kim, Ryan and Jonathan Vogel, “Trade shocks and labor market adjustment,” American Eco-
nomic Review: Insights, 2021, 3 (1), 115-130.

Lai, Wangyang, Yun Qiu, Qu Tang, Chen Xi, and Peng Zhang, “The Effects of Temperature
on Labor Productivity,” Annual Review of Resource Economics, 2023, 15 (1), 213-232.

Ma, Enjie (Jack), “Extreme Heat and Directed Innovation,” 2025. Job Market Paper, Cornell
University,
urlhttps://enjiema.com/files/JackMa ;M P.pdf.

Mazloumi, Adel, Farideh Golbabaei, Somayeh Mahmood Khani, Zeinab Kazemi, Mostafa
Hosseini, Marzieh Abbasinia, and Somayeh Farhang Dehghan, “Evaluating effects of heat

stress on cognitive function among workers in a hot industry,” Health promotion perspectives,
2014, 4 (2), 240.

Milner, Allison, Andrew Page, and Anthony D LaMontagne, “Long-term Unemployment and
Suicide: A Systematic Review and Meta-analysis,” PloS One, 2013, 8 (1), e51333.

Nicholson, Walter and Karen Needels, “Unemployment insurance: Strengthening the relation-

ship between theory and policy,” Journal of Economic Perspectives, 2006, 20 (3), 47-70.

Park, Jisung, Nora Pankratz, and Arnold Behrer, “Temperature, Workplace Safety, and Labor
Market Inequality,” Technical Report 2021.

Ponticelli, Jacopo, Qiping Xu, and Stefan Zeume, “Temperature and Local Industry Concen-

tration,” Working Paper 31533, National Bureau of Economic Research August 2023.

Price, Brendan M. and Melanie Wasserman, “The Summer Drop in Female Employment,” The
Review of Economics and Statistics, 06 2024, pp. 1-46.

25



Qiu, Xincheng and Masahiro Yoshida, “Climate Change and the Decline of Labor Share,”
Technical Report, IZA Discussion Papers 2024.

Raphael, Steven and Rudolf Winter-Ebmer, “Identifying the Effect of Unemployment on
Crime,” The Journal of Law and Economics, 2001, 44 (1), 259-283.

Riesing, Kara, “Effect of Tornadoes on Local Labor Markets,” Technical Report, working paper
2018.

Rujiwattanapong, W. Similan, “Job Search, Job Findings and the Role of Unemployment
Insurance History,” Discussion Papers 2441, Centre for Macroeconomics (CEM) Sep 2024.

_, “Unemployment dynamics and endogenous unemployment insurance extensions,” Furopean
Economic Review, 2025, 178, 105106.

_ and Masahiro Yoshida, “Climate Change and Unemployment Seasonality: Evidence from
U.S. Counties,” WINPEC Working Paper E2512, Waseda Institute of Political Economy
(WINPEC) 5 2025.

Somanathan, Eswaran, Rohini Somanathan, Anant Sudarshan, and Meenu Tewari, “The Im-
pact of Temperature on Productivity and Labor Supply: Evidence from Indian Manufactur-
ing,” Journal of Political Economy, 2021, 129 (6), 1797-1827.

Stock, James H and Mark W Watson, “Business cycle fluctuations in US macroeconomic time

series,” Handbook of macroeconomics, 1999, 1, 3-64.

Xiao, Zhanbing, “Labor Exposure to Climate Risk, Productivity Loss, and Capital Deepening,”
2021. Working paper, posted 1 August 2021; revised 29 March 2024.

Yoshida, Masahiro, “Climate Change and the Rise of Adult Male Dropouts,” SSRN working
paper, 2025.

Zhang, Peng, Olivier Deschenes, Kyle Meng, and Junjie Zhang, “Temperature Effects on
Productivity and Factor Reallocation: Evidence from a Half Million Chinese Manufacturing

Plants,” Journal of Environmental Economics and Management, 2018, 88, 1-17.

Zivin, Joshua Graff and Matthew Neidell, “Temperature and the Allocation of Time: Impli-
cations for Climate Change,” Journal of Labor Economics, 2014, 32 (1), 1-26.

26



APPENDICES FOR ONLINE PUBLICATION

Climate Change and Unemployment Dynamics:

Evidence from U.S. Counties

W. Similan Rujiwattanapong and Masahiro Yoshida

February, 2026



I Appendix: Data

I.1 Climate Change

Weather stations. Panel (a) of Figure A-1 shows the long-run trend in the number of weather
stations operating in the U.S. from 1900 to 2019, separated by the availability of stations’ daily
records in each year (four series). The number of stations in operation generally increases
over time. Daily weather measures are constructed using only stations with complete daily
records in each year. Panel (b) of Figure A-1 illustrates the spatial distribution of stations
with complete records (red dots) in 2019 overlaid on county boundaries. The map shows dense

climate monitoring overall, particularly in populous areas.

Figure A-1: Weather Stations in the U.S. Mainland

(a) Number of Operating Stations (1900-2019) (b) Spatial Distribution (2019)
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Notes: Panel (a): the number of weather stations in the U.S. mainland from the Global Historical
Climatology Network Daily (GHCN-daily), provided by the National Climatic Data Center (NCDC)
of the National Oceanic and Atmospheric Administration (NOAA). Panel (b): the distribution of
weather stations with complete records (red dots) over county borders (thin lines) and state borders
(thick lines).



Weather variables at the county level. We construct daily minimum and maximum temper-
atures, precipitation, and snowfall from GHCN-Daily stations with complete daily records in
each year, 1950-2019. Following the inverse-distance weighting approach commonly used in the
literature, we compute county-level daily weather measures by averaging observations from the
three weather stations closest to each county’s 2020 population centroid (as provided by the

Census Bureau), with weights given by the inverse distance to the centroid.

Figure A-2 displays the geographic distribution of hot and cold days across counties. Panel
(al/bl) shows the annual frequency of hot days and cold days averaged over the period 2000
2019, and Panel (a2/b2) illustrates the change in period-averaged exposure to hot and cold
days between 1950-1979 and 2000-2019.

Figure A-2: Extreme Temperature Days across U.S. Counties

(a) Hot days
(al) Hot days per year (over 2000-2019) (a2) A Hot days (from 1950-1979 to 2000-2019)
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Notes: Panel (al/bl): Period-average exposure over 2000-2019. Panel (a2/b2): Changes in period-
average exposure between 1950-1979 and 2000-2019. Thresholds for hot and cold days are set to 75°F
and 50°F, respectively, based on average working-hour temperature, constructed as a weighted average
of daily maximum and minimum temperatures, with a weight of 0.75 on the maximum.
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Precipitation. Figure A-3 shows the spatial distribution of precipitation across counties over
the period 2000-2019, as well as the change in period-averaged exposure to rainy days between
1950-1979 and 2000-2019.

Figure A-3: Precipitation across U.S. Counties

(a) Rainy days (2000-2019) (b) A Rainy days (from 1950-1979 to 2000-2019)

Notes: Panel (a): Period-averaged exposure over 2000-2019. Panel (b): Changes in period-averaged
exposure between 1950-1979 and 2000-2019.

Humidity. The relative humidity is constructed from dew points at another set of station
records from NOAA’s Global Summary of the Day (GSoD). To compute a relative humidity,
we use a standard meteorological formula from Glossary of Meteorology by the American Me-
teorological Society. A relative humidity Hy of a day d and a vapor pressure v(T') as a function

of temperature T is given by:

_ ’U(Tdew)
Ha== 1)

(T = 0.6112exp(17.67T/(T + 243.5)) x 10 (A1)

where v(Tye,) is a saturation vapor pressure at the dew point Tye,, and v(T}) is a day d ’s vapor
pressure at a temperature Ty;. Heat Index, of a day d is a function of a temperature 7T, and a

daily relative humidity Hy such that

Heat Index, = 0.817 + H4(0.997, — 14.3) + 46.3. (A2)
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1.2 Unemployment

Unemployment seasonality outside the U.S. Figure A-4 illustrates changes in seasonal un-
employment rates outside the U.S., focusing on Canada, Germany, the UK, and the OECD
aggregate. Canada, Germany, and the OECD have experienced a decline in seasonal volatility
similar to that in the U.S. By contrast, seasonality in the UK has been amplified by rising

summer unemployment.

Figure A-4: The Dynamics of Seasonal Unemployment Rates across Countries
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Notes: In each period, a seasonal unemployment rate is computed as the difference between period-
average NSA and SA monthly nationwide (or OECE-wide) unemployment rates, as provided by the
FRED (Federal Reserve Economic Data).
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Seasonal unemployment dynamics across commuting zones. As a commuting-zone counter-
part to Figure 2¢, Figure A-5 shows that half-year exposure to hot days in summer and cold

days in winter is positively associated with changes in seasonal unemployment across commuting
zones over 1990-2019.

Figure A-5: Temperature Shocks and Seasonal Unemployment Rate Swings

(ANSA unemployment rate within commuting zones averaged over 1990-2019)
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Notes: County-level exposure to hot days (>75°F) and cold days (<50°F) is aggregated to the com-
muting zone (CZ) level, weighted by county-level labor force over 1990-2019. The half-year seasonal
swing in unemployment rate in CZs are computed from the BLS monthly data. The fitted lines are
weighted by period-average labor force, represented by the bubble size. The y-axis is truncated at "2
for visibility.



The seasonal regularity in employment. In contrast to the seasonality of unemployment,
Figure A-6 documents the seasonality of employment. Figure A-6a shows moderation in the
seasonal employment rate (i.e., the employment-to-population ratio). Figure A-6b indicates
that hotter summers and colder winters are associated with slower employment growth and

larger declines within states, respectively.

Figure A-6: Employment Seasonality in the U.S.

(a) Long-run Trend of Seasonal Employment Rate
(al) By month (1950-1983 vs. 1984-2019) (a2) By quarter (1950-2019)
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Notes: Panel (a): Within a given month or quarter, the seasonal employment rate is defined as
the difference between the non-seasonally adjusted (NSA) and seasonally adjusted (SA) nationwide
employment-to-population ratios, computed using BLS employment series (ages 16+) and SEER
working-age population data (ages 15+). Panel (al): Change in the period-averaged seasonal monthly
employment rate, comparing 1950-1983 with 1984-2019. Panel (a2): Five-year moving average of the
quarterly seasonal employment rate. Panel (b): County-level exposure to analogously defined hot and
cold days is aggregated to states plus D.C. averaged during 1990-2019, weighted by county labor force.
The fitted lines are weighted by the period-average population (ages 15+), represented by bubble size.
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II Appendix: Empirical Analysis

II.1 Robustness

Fixed effects.

Figure A-7 tests the sensitivity of our baseline temperature estimates with

county fixed effects (FEs) and year-month FEs (thin black lines) to alternative FE combinations.

Figure A-7: Robustness to Fixed Effects (FEs)
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Notes: Effects of temperature exposure on unemployment rate (pp, 1990-2019): 10 days in each
temperature bin (relative to 65-75°F). N = 1,117,358. Unit of analysis: counties x years X months.
In Eq.(1), county FEs and year-month FEs are replaced with alternative combinations of FEs in panels
(2)—(7), corresponding to the columns reported in Table A-2. Rainy days per month are controlled.
Regressions are weighted by the log of labor force. Dotted red lines are 95% confidence intervals,
constructed from standard errors clustered by commuting zone.
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Additional weather variables. Figure A-8 tests the robustness to inclusion of additional weather
controls. Including or excluding these weather variables does not significantly alter the tem-

perature estimates.

Figure A-8: Robustness to Additional Weather Controls

(2) rainy days (baseline) (2) no weather controls (3) (1) + daily precipitation
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Notes: Effects of temperature exposure on unemployment rate (pp, 1990-2019): 10 days in each
temperature bin (relative to 65-75°F). N = 1,117,358. Unit of analysis: counties x years x months.
Eq.(1) is estimated with alternative additional weather variables C;;,, in (2)-(6). Note that (1)-
(6) corresponds with columns in Table A-3. County fixed effects and year-month fixed effects are
controlled for. Regressions are weighted by the log of labor force. Red dotted lines are 95% confidence
intervals, constructed from standard errors clustered by commuting zone. Thin black lines indicate
point estimates of the baseline (1).

Two-tailed models under alternative temperature cutoffs. We simplify treatment variables

Y be (110,13, 16} days?t’m in the baseline model into two summary measures, as follows:
UnempRate, , ,, = B'"dy g + Bcdism + ACrim + 61 + Stm + €1t (A3)

where hd; ;,, and cd;;,, denote hot days (>75°F) and cold days (<50°F), respectively. Alterna-
tively, Table A-1 tests reasonable pairs of temperature cutoffs for hot and cold days. Consistent
with the U-shape estimates at Figure 3al, columns 1-5 in Panel (a) and (b) yield significantly
positive effects on NSA unemployment rates. By contrast, temperature effects on SA unem-

ployment rates are an order of magnitude smaller and, for cold days, are mostly imprecisely
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estimated and difficult to interpret.

Table A-1: Robustness to Temperature Cutoffs (Two-Tailed Models, 1990-2019)

Panel (a): Cutoffs for Hot Days

Baseline
73°F 75°F T7°F 80°F 85°F 90°F

Dependent variable: NSA unemployment rate (pp)

(1) (2) 3) (4) (5) (6)

10 hot days

10 cold days (<50°F)

Adjusted R?

0201 0240 0262 0259 0201  0.093
(0.025)  (0.026)  (0.024)  (0.022)  (0.020) (0.029)
0288  0.248 0215 0206 0274  0.351
(0.025)  (0.026)  (0.025) (0.024)  (0.024) (0.024)

0.713 0.713 0.714 0.714 0.713 0.713

Dependent variable: SA unemployment rate (pp)

(7) (8) (9) (10) (11) (12)

10 hot days

10 cold days (<50°F)

Adjusted R?

0.009 0015 0014 0011 0012 —0.018
(0.007)  (0.008)  (0.008)  (0.008)  (0.009) (0.014)
0.003  —0.001 —0.002 —0.0004 0.001  0.009
(0.006)  (0.007)  (0.007)  (0.008)  (0.006) (0.004)

0.747 0.747 0.747 0.747 0.747 0.747

Panel (b): Cutoffs for Cold Days

Baseline
55°F 50°F 45°F 40°F 35°F 30°F

Dependent variable: NSA unemployment rate (pp)

(1) (2) 3) (4) () (6)

10 hot days (>75°F)

10 cold days

Adjusted R?

0295 0240 0220 0234 0263  0.293
(0.026)  (0.026)  (0.023)  (0.022)  (0.022) (0.022)
0202 0248 0259 0250 0239  0.235
(0.023)  (0.026)  (0.026) (0.026)  (0.027) (0.031)

0.713 0.713 0.714 0.713 0.713 0.713

Dependent variable: SA unemployment rate (pp)

(7) (8) 9) (10) (11) (12)

10 hot days (>75°F)

10 cold days

Adjusted R?

0016 0015 0017 0018 0019  0.018
(0.007)  (0.008)  (0.008)  (0.007)  (0.007) (0.006)
—0.004 —0.001 —0.005 —0.008 —0.010 —0.013
(0.006)  (0.007)  (0.006) (0.006)  (0.006) (0.006)

0.747 0.747 0.747 0.747 0.747 0.747

Notes: N = 1,117,358 for the NSA unemployment rates and N = 1,114, 548 for the SA series; for some
county—year—month cells, seasonal adjustment is not reported by the BLS. Unit of analysis: counties
x years X months. The two-tailed model (Eq.(A3)) is estimated using reasonable temperature cutoffs.
Rainy days are controlled for, along with county fixed effects and year-month fixed effects. Regressions

are weighted by the log of labor force; standard errors clustered by commuting zone.
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Robustness to fixed effects:

two-tailed models Using the two-tailed model, Table A-2

reports the estimates under alternative fixed-effect combinations corresponding to panels (2)—

(7) in Figure A-7, in addition to the baseline specification (1).

Adding state-month FEs or

state-year-month FEs reduces the estimates by roughly half, but the effects remain precisely

estimated.

Table A-2: Robustness to Fixed Effects (Two-Tailed Model, 1990-2019)

Dependent variable: unemployment rate (pp)

Baseline
(1) (2) () (4) () (6) (7)

10 hot days 0.240 0.229 0.219 0.225 0.125 0.132 0.139

(0.026) (0.027)  (0.025) (0.026) (0.025) (0.039) (0.045)
10 cold days 0.248 0.255 0.262 0.254 0.108 0.143 0.151

(0.026) (0.027)  (0.026) (0.026) (0.029) (0.049) (0.053)

Fixed effects

county FEs Yes - Yes Yes Yes Yes -
county-year FEs - Yes - - - - Yes
county linear trend - - Yes - - - -
year-month FEs Yes Yes Yes Yes Yes - -
state-month FEs - - - - Yes - -
state-year FEs - - - Yes - - -
state-year-month FEs - - - - - Yes Yes
Adjusted R? 0.713 0.904 0.767 0.784 0.721 0.795 0.918

Notes: N =1,117,358. Unit of analysis: counties x years x months. The two-tailed model (Eq.(A3))
is estimated using hot days (>75°F) and cold days (<50°F) with alternative combination of fixed

effects in (2)—(7).

Rainy days per month are controlled for. Regressions are weighted by the log of

labor force; standard errors clustered by commuting zone.

A-10



Robustness to additional weather variables: two-tailed models Table A-3 examines the
sensitivity of temperature effects in the simpler two-tailed model to alternative sets of addi-
tional weather controls, corresponding to panels (1)—(6) in Figure A-8. Column 1 repeats our
two-tailed baseline specification. Column 2 includes no additional weather controls. Columns
3 and 4 add daily precipitation and relative humidity (constructed by Eq.(A1)), respectively,
to the baseline. The estimates remain broadly stable across specifications. Columns 5 and 6
sequentially add snowfall on the extensive and intensive margins. The magnitudes of tempera-
ture estimates are modestly reduced, but remain precisely estimated. As an extension, Column
7 introduces “uncomfortable days,” defined as days with a heat index above 80°F, that interact
temperature with relative humidity (constructed by Eq.(A2)) and yields larger and more precise

estimates than the baseline hot-day effects.

Table A-3: Robustness to Additional Weather Variables (Two-Tailed Models, 1990-2019)

Dependent variable: unemployment rate (pp)

Baseline
(1) (2) (3) (4) (5) (6) (7)

10 hot days 0.240 0.225 0.247 0.243 0.206 0.206

(0.026) (0.025) (0.025) (0.026) (0.024) (0.024)
10 uncomfortable 0.266
days (0.023)
10 cold days 0.248 0.262 0.252 0.219 0.208 0.208 0.197

(0.026) (0.026) (0.024) (0.029) (0.025) (0.025) (0.026)
10 rainy days 0.151 0.137 0.098 0.145 0.145 0.115

(0.023) (0.021) (0.022) (0.023) (0.023) (0.021)
daily precipitation 0.049

(0.012)
relative humidity 0.007
([0,100]%) (0.002)
10 snowy days 0.117 0.119
(0.023) (0.021)

daily snowfall —0.004
(10 cm) (0.015)
N 1,117,358 1,117,370 1,110,582 1,117,358 1,117,358 1,117,358 1,117,358
Adjusted R? 0.713 0.713 0.713 0.714 0.714 0.714 0.714

Notes: Unit of analysis: counties x years x months. The two-tailed model (Eq.(A3)) is estimated
using hot days (>75°F) and cold days (<50°F), along with alternative additional weather variables
Citm in (2)—(6). County fixed effects and year-month fixed effects are controlled for. Regressions are
weighted by the log of labor force; standard errors clustered by commuting zone.
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Two-tailed models with lagged weather variables. Table A-4 shows the robustness results,
adding lagged hot days and cold days in the two-tailed baseline model. Hot days exhibit larger,

more persistent, and more precisely estimated lagged effects than cold days.

Table A-4: Robustness to Lagged Weather Variables (Two-Tailed Models, 1990-2019)

Dependent variable: unemployment rate (pp)

Baseline Simulation
baseline
(1) (2) (3) 4) (5) (6)
10 hot days 0.240 0.110 0.150 0.161 0.161 0.150
(0.026) (0.017) (0.018) (0.019) (0.019) (0.018)
1-month lag 0.248 0.139 0.150 0.151 0.148
(0.023) (0.015) (0.015) (0.015) (0.015)
2-month lag 0.168 0.116 0.124 0.122
(0.020) (0.015) (0.015) (0.015)
3-month lag 0.085 0.077 0.079
(0.013) (0.011) (0.011)
4-month lag 0.005 0.025
(0.011) (0.007)
5-month lag —0.047
(0.016)
10 cold days 0.248 0.119 0.156 0.159 0.167 0.170
(0.026) (0.016) (0.017) (0.018) (0.018) (0.017)
1-month lag 0.166 0.072 0.083 0.082 0.085
(0.022) (0.015) (0.014) (0.014) (0.014)
2-month lag 0.085 0.048 0.051 0.053
(0.017) (0.013) (0.013) (0.012)
3-month lag 0.030 0.006 0.001
(0.012) (0.010) (0.010)
4-month lag 0.037 0.027
(0.010) (0.008)
5-month lag 0.029
(0.014)
N 1,117,358 1,117,357 1,117,356 1,117,355 1,117,354 1,117,353
Adjusted R? 0.713 0.716 0.716 0.717 0.717 0.717

Notes: Unit of analysis: counties x years x months. The two-tailed model (Eq.(A3)) is estimated
using hot days (>75°F) and cold days (<50°F) with a M-month distribution of lags (M € {0,---,5}).
An analogously lagged series of rainy days is controlled for, along with county fixed effects and year-
month fixed effects. Regressions are weighted by the log of labor force; standard errors clustered by
commuting zone.
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I1.2 Auxiliary Analyses

Clustering units. Figure A-9 examines alternative clustering units for standard errors. 95%
confidence intervals, constructed using standard errors clustered by commuting zone, by state,

and by state-year (two-way clustering), are illustrated separately.

Figure A-9: Robustness to Clustering Units
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working—hour daily temperature (°F)

commuting zones _ _ _ _ states states + years
(baseline) (two—way clustering)

clustering units -+
Notes: Effects of temperature exposure on unemployment rate (pp, 1990-2019): 10 days in each
temperature bin (relative to 65-75°F). N = 1,117,358. Unit of analysis: counties X years X months.
Eq.(1) is estimated with alternative units of clustering errors. Rainy days are controlled for, along
with county fixed effects and year-month fixed effects. Regressions are weighted by the log of labor
force. 95% confidence intervals, constructed from standard errors under alternative clustering units,
are illustrated around the point estimates (red lines).
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Robustness to moving-average treatment windows. Table A-5 reports the estimates from the
the two-tailed baseline model using an M-month (M € {1,---,6}) moving-average treatment

window for weather variables.

Table A-5: Robustness to Moving-average Treatment Windows (Two-Tailed Models, 1990—
2019)

Dependent variable: unemployment rate (pp)
Moving-average treatment window

Baseline
1 month 2 months 3 months 4 months 5 months 6 months
(1) (2) (3) (4) (5) (6)
10 hot days 0.240 0.350 0.450 0.530 0.571 0.568

per month (0.026)  (0.037)  (0.047)  (0.055)  (0.057)  (0.055)

10 cold days ~ 0.248 0.294 0.314 0.308 0.295 0.272
per month (0.026)  (0.035)  (0.043)  (0.048)  (0.051)  (0.049)

Adjusted R? 0.713 0.715 0.716 0.716 0.715 0.713

Notes: N = 1,117,358. Unit of analysis: counties X years x months (moving-averaged over an
M-month (M € {1,---,6}) treatment window). The two-tailed model (Eq.(A3)) is estimated using
M-month moving average of hot days (>75°F) and cold days (<50°F). An M-month moving average
of rainy days is controlled for, along with county fixed effects and year-month fixed effects. Regressions
are weighted by the log of labor force; standard errors clustered by commuting zone.
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Spatial heterogeneity. How does the climate impact differ across space? To see this, we start
by allowing temperature effects in the two-tailed model to vary with regional climate normals,

proxied by the difference in period-averaged exposure to hot and cold days during the 1980s.

Table A-6 tests heterogeneous impacts across regional climate normals. We find that heat
effects are stronger in historically hot regions (e.g., the Southeast), and cold effects are stronger
in historically cold regions (e.g., the Northeast). This plausibly reflects their greater exposure

to the extreme upper and lower tails of the daily temperature distribution.

Table A-6: Spatial Heterogeneity across Differential Climate Normals (1990-2019)

Dependent variable: unemployment rate (pp)

Cutoffs for cold days

Baseline
55°F 50°F 45°F 40°F 35°F
(1) (2) (3) (4) (5)
10 hot days (> 75°F) 0.138 0.120 0.120 0.113 0.093

(0.020)  (0.020)  (0.020)  (0.021)  (0.024)

10 cold days 0.028 0.079 0089 0087  0.092
(0.022)  (0.026)  (0.026)  (0.023)  (0.022)

10 hot days 0.005 0.005 0.007 0.010 0.013
x hot days minus cold days (1980s)  (0.001) (0.001) (0.001)  (0.001)  (0.001)

10 cold days —0.013  —0.013  —0.013 —0.014 —0.018
x hot days minus cold days (1980s)  (0.002)  (0.002)  (0.003)  (0.003)  (0.004)

Adjusted R? 0.714 0.714 0.714 0.714 0.714

Notes: N =1,117,358. Unit of analysis: counties x years x months. The two-tailed model (Eq.(A3))
is estimated using hot days (>75°F) and cold days under different cutoffs, interacted with a measure
of historical climate defined as the 1980s average difference between hot and cold days. Rainy days are
controlled for, along with county fixed effects and year-month fixed effects. Regressions are weighted
by the log of labor force; standard errors clustered by commuting zone.
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Adaptation. Does the climate impact diminish over time, consistent with adaptation? Table
A-T7 estimates models interacted with linear time trend across different cold-day thresholds. As
all the coefficients on the interaction terms are statistically insignificant, we find little evidence

of adaptation.

Table A-7: Intertemporal Adaptation (1990-2019)

Dependent variable: unemployment rate (pp)

Cutoffs for cold days

Baseline
55°F 50°F 45°F 40°F 35°F
(1) (2) (3) (4) (5)

10 hot days (>75°F) 0.354 0.292 0.270 0.284 0.313
(0.048) (0.051) (0.052) (0.052) (0.052)

10 cold days 0.255 0.301 0.308 0.292 0.273
(0.051) (0.054) (0.054) (0.054) (0.057)
10 hot days —0.041 —0.036 —0.034 —0.034 —0.034
x decades (0.029) (0.032) (0.033) (0.034) (0.035)
10 cold days —0.036 —0.037 —0.034 —0.029 —0.024
x decades (0.027) (0.026) (0.026) (0.026) (0.028)
Adjusted R? 0.713 0.714 0.714 0.714 0.713

Notes: N =1,117,358. Unit of analysis: counties x years X months. The two-tailed model (Eq.(A3))
is estimated using hot days (>75°F) and cold days (<50°F), interacted with a continuous measure of
decades since 1990. Rainy days are controlled for, along with county fixed effects and year-month fixed
effects. Regressions are weighted by the log of labor force; standard errors clustered by commuting
zone.
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III Appendix: Quantitative Assessment

Cumulative lagged effects. To compute the total impacts of extreme temperature, we sum
up lagged effects from previous months estimated earlier in Table A-4. For the purpose of
quantifying the aggregate climate impacts, we rely on a parsimonious two-tailed model because
bin models with lagged treatments are estimated much less precisely due to their large number

> We construct the counterfactual unemployment rates over 1990-2019 (study

of variables.?
period) where all the days fell into normal (non-hot, non-cold) days, which shall be compared
with the observed unemployment rates to assess the role of extreme temperature. Figure A-10(a)
presents the simulation results using lag distributions of up to M months (M € {0,---,5}).
Incorporating lagged effects over M = 0 to M = 4 months systematically increases the implied

reduction in the unemployment rate absent extreme temperatures.

To assess how climate change induced the shrinkage of unemployment volatility, we construct
the counterfactual unemployment rates over 2000-2019 where the distribution of hot days and
cold days remained in the averaged over the pre-warming 1950-1979. Then, we compute its
within-year variance, which shall be compared with the observed data counterpart to assess the
role of climate change. Figure A-10(b) reports the results using lag distributions of up to M
months (M € {0,---,5}). Adding lags does not materially increase the implied contribution of

climate change.

Figure A-10: Simulated Impacts across Treatment Lags

(a) Reduction in NSA Unemployment Rate (b) Shrinking Variance of NSA Unemployment Rate

Absent Extreme Temperatures Explained by Climate Change
(1990-2019) (1950s—70s vs. 2000-2019)
no lags
(baseline) 4.1%
up to 1 month 3.2%

-, up to 2 months 11.4% 5.6%
on
<
- up to 3 months 12.4% 5.5%

up to 4 months 12.8% 5.9%

up to 5 months 12.5% 6.3%

0% 2% 4% 6% 8% 10% 12% 14% 0% 2% 4% 6%
Share (%) Share (%)
I hot days I cold days temperature shocks (from hot and cold days)

Notes: Simulations are based on a two-tailed model (Eq.(A3)) that includes hot days (>75°F), cold
days (<50°F) under a different lag distribution. An analogously lagged series of rainy days is controlled
for, along with county fixed effects and year-month fixed effects. Regressions are weighted by the log
of the labor force. See above for the simulation procedure.

25We find that climate impacts are mechanically underrated when using more extreme and rarer temperature
thresholds (e.g., 85°F or 40°F) than the baseline cutoffs (i.e., 75°F or 50°F). These results are available upon
request.
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Robustness. Figure A-11 tests the robustness of the back-of-the-envelope calculations under
key modeling protocols. As a preferred benchmark for quantitative assessment, Model (1) uses
a two-tailed specification with up to two months of lags, as reported in Column 3 of Table A-4.
Model (2) additionally controls for state-year fixed effects. Models (3) and (4) are bin-model
counterparts to Models (1) and (2), respectively. Using bin models yields comparable implied
effects of extreme temperatures in Panel (a), but noticeably larger effects in Panel (b). However,
once lagged temperature bins are included, estimates become substantially less precise, and we

thus refrain from using these specifications for our baseline simulation.

Figure A-11: Simulated Impacts across Key Modeling Protocols Under a Quarterly Treatment
Window

(a) Reduction in NSA Unemployment Rate (b) Shrinking Variance of NSA Unemployment Rate
Absent Extreme Temperatures Explained by Climate Change
(1990-2019) (1950s-70s vs. 2000-2019)

(1) two-tailed model 11.4% 5.6%

{

(2) two-tailed model

(add state-year FEs) 11.5% 5.6%

(4) bin model "
(add state-year FEs) 10.9% LU
0% 2% 4% 6% 8% 10% 12% 14% 0% 2% 4% 6% 8% 10% 12%
Share (%) Share (%)
I hot days I cold days temperature shocks (from hot and cold days)

Notes: Simulations are based on two models: a two-tailed specification (Eq.(A3)) that includes hot
days (> 75°F) and cold days (< 50°F), and a bin specification (Eq.(1)) that includes hot-day bins
(13th—-16th) and cold-day bins (1st—7th), with lags of up to two months for temperature variables. An
analogously lagged series of rainy days is controlled for, along with county fixed effects and year-month
fixed effects. Regressions are weighted by the log of the labor force. Panel (a): Monthly exposure to
hot days and cold days over 19902019 is aggregated using a weighted sum with the vector of lagged
coefficients. Panel (b): A difference of average monthly exposure to hot days and cold days between
1950-1979 and 2000-2019 is aggregated using a weighted sum with the vector of lagged coefficients.
See Section III for the simulation procedure.

Within-year climate impacts. Using a two-tailed model with up to two months of lagged
weather variables (Column 3 of Table A-4), Figure A-12 revisits the average within-year monthly
climate impacts. Figure A-12(a) shows the climate impacts on NSA unemployment rates over
1990-2019. We find that the effects of additional hot and cold days are concentrated in the
summer (Q3) and winter (Q1) quarters, respectively. The contribution of extreme temperatures
to non-recessionary NSA unemployment exhibits substantial seasonal dispersion, ranging from

7.6% in May to 17.8% in September. Figure A-12(b) shows the impacts from climate change
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from 1950s-1970s to 2000-2019. We find that fewer cold days reduce the unemployment rate

in winter (Q1), while more hot days increase it in summer (Q3) and fall (Q4).

Figure A-12: Simulated Impacts on the NSA Unemployment Rate across Months

(a) Temperature impacts (b) A Temperature impacts

(over 1990-2019) (from 1950s—70s to 2000-2019)

0.06
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I hot days I cold days I A hot days HIEEEE A cold days

Notes: Simulations are based on a two-tailed model (Eq.(A3)) that includes hot days (>75°F) and cold
days (< 50°F), with lags of up to two months. An analogously lagged series of rainy days is controlled
for, along with county fixed effects and year-month fixed effects. Regressions are weighted by the log of
the labor force. Panel (a): Monthly exposure to hot days and cold days over 1990-2019 is aggregated
using a weighted sum with the vector of lagged coefficients. Panel (b): A difference of average monthly
exposure to hot days and cold days between 1950-1979 and 2000-2019 is aggregated using a weighted
sum with the vector of lagged coefficients. See Section III for the simulation procedure.

IV Appendix: Mechanism

Definitions of flow proxies. For Table 1(a), we use the following proxies from the QWI based
on the QWI codebook (QWI 101).

e End-of-Quarter Employment Counts (EmpEnd): Estimated number of jobs on the last
day of the quarter.

e Job creation (FrmJbGn): Estimated number of jobs gained at firms throughout the quar-

ter.

e Job Destruction (FrmJbLs): Estimated number of jobs lost at firms throughout the quar-

ter.

e End-of-Quarter Hires (HirAEnd): Estimated number of workers who started a new job

in the specified quarter, which continued into next quarter.

e Separations (Stable) (SepS): Estimated number of workers who had a job for at least a
full quarter and then the job ended. Jobs are counted as a stable separation in the last

quarter of employment.
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For Table 1(b), we use the following proxies from the JOLTS based on the technical notes in
the BLS News Release.

e Hires: include all additions to the payroll during the entire reference month, includ-
ing newly hired and rehired employees; full-time and part-time employees; permanent,
short-term, and seasonal employees; employees who were recalled to a job at the location
following a layoff (formal suspension from pay status) lasting more than 7 days; on-call or
intermittent employees who returned to work after having been formally separated; work-

ers who were hired and separated during the month, and transfers from other locations.
e Separations: include all separations from the payroll during the entire reference month.

— Quits: include employees who left voluntarily, with the exception of retirements or

transfers to other locations.

— Layoffs and discharges: includes involuntary separations initiated by the employer,
including layoffs with no intent to rehire; layoffs (formal suspensions from pay sta-
tus) lasting or expected to last more than 7 days; discharges resulting from mergers,
downsizing, or closings; firings or other discharges for cause; terminations of perma-
nent or short-term employees; and terminations of seasonal employees (whether or

not they are expected to return the next season).

— Other separations: include retirements, transfers to other locations, separations due

to employee disability, and deaths.

e Job openings: include all positions that are open on the last business day of the reference

month. A job is open only if it meets all three of these conditions:
— A specific position exists, and there is work available for that position. The position
can be full-time or part-time, and it can be permanent, short-term, or seasonal.

— The job could start within 30 days, whether or not the employer can find a suitable

candidate during that time.

— The employer is actively recruiting workers from outside the establishment to fill the

position.
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V Appendix: Consequences for Unemployment Insurance

Descriptive statics: UI recipiency across states and months. Figure A-13 summarizes the
descriptive statistics of Ul recipiency. Figure A-13a illustrates our key variable of analysis: the
state-level insured unemployment rate (i.e., the share of Ul recipients in Ul-covered employ-
ment) averaged over 1990-2019, shown in terms of its time trend (al) and spatial dispersion
(a2). The insured unemployment rate (solid line) comoves with the standard unemployment
rate (dotted line), but with a smaller magnitude of about 1-4%. Moreover, the map (a2) shows
that Northern states typically exhibit higher insured unemployment rates than Southern states,

with notable exceptions such as South Dakota and California.

Figure A-13b documents monthly patterns in Ul recipiency, comparing Northern and South-
ern states across three measures: (bl) the insured unemployment rate, (b2) average weekly
benefits per Ul recipient, and (b3) average monthly benefits paid per Ul-covered employment.
Two patterns emerge. First, the insured unemployment rate peaks primarily in winter (Q1) and
secondarily in summer (Q3), mirroring the seasonal cycle of the standard unemployment rate
(Recall Fact 1 in Section 2.3, Seasonal Regularity in Unemployment). Second, Northern states
consistently exhibit higher UI recipiency than Southern states, likely reflecting differences in Ul

generosity.
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Figure A-13: Descriptive Statistics of UI Recipiency

(a) Insured Unemployment Rate
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Notes: Panel (al): Unemployment rates are headline statistics published by the BLS. The insured
unemployment rate is defined as UT receipts divided by Ul-covered employment. Panel (a2): Monthly
NSA insured unemployment rates are averaged over 1990-2019, excluding NBER recession months.
Bold black lines denote climatic zones defined by the NOAA. Panel (b) Southern states include the
Southeast (VA, NC, SC, GA, AL, FL), South (TX, LA, MS, AR, OK, KS), Southwest (AZ, NM, UT,
CO) and West (CA, NV). Northern states comprise the remaining contiguous U.S. states, including
D.C. NBER recession months are excluded from the sample. Source: UI recipients are constructed
by aggregating the Weekly Claims Data at the monthly level, while benefits paid, weekly benefits,
and Ul-covered employment are constructed from the Monthly Program and Financial Data, both
produced by the Employment and Training Administration of the U.S. Department of Labor.
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Climate impact on Ul recipiency across states. Table A-8 examines the climate impact on Ul
recipiency across states over 1990-2019. Column 1 reports the key estimates of insured unem-
ployment rate in Eq.(5): an additional 10 hot or cold days per month increase Ul recipients by
0.11pp and 0.29pp per Ul-covered employment, respectively. Columns 2—4 analyze alternative
outcome variables using Eq.(5). Columns 2 and 3 show that claimed weeks and compensated
weeks, respectively, are also responsive to extreme temperatures. Column 4 indicates that 10
hot or cold days per month raise Ul expenditure by 0.95US$ and 4.39US$ per Ul-covered em-
ployment, respectively. Columns 5-8 replace state fixed effects with state-year fixed effects;
the estimates remain precisely estimated and generally larger in magnitude for hot days and

smaller for cold days.

Table A-8: Extreme Temperature and Statewide UI Recipiency (Monthly, 1990-2019)

Dependent variables

Ul Claimed Compensated benefits
recipients weeks weeks paid
(0-100 pp) (weeks) (weeks) (2019 USS)

per Ul-covered employment
(1) (2) (3) (4)

Descriptive statistics (mean (sd))

2.281 0.0866 0.0986 28.400
(0.825) (0.0346) (0.0364) (13.354)
10 hot days 0.105 0.00284 0.00272 0.946
(0.034) (0.00145) (0.00125) (0.374)
10 cold days 0.292 0.0143 0.0125 4.389
(0.027) (0.0012) (0.0011) (0.401)
state FEs Yes Yes Yes Yes
year X month FEs Yes Yes Yes Yes
Adjusted R? 0.809 0.804 0.792 0.813
(5) (6) (7) (8)
10 hot days 0.161 0.00485 0.00470 1.615
(0.032) (0.00139) (0.00119) (0.361)
10 cold days 0.211 0.0114 0.00967 3.465
(0.020) (0.0009) (0.00078) (0.294)
state x year FEs Yes Yes Yes Yes
yearx month FEs Yes Yes Yes Yes
Adjusted R? 0.936 0.924 0.912 0.930

Notes: N = 17,640. Unit of analysis: states x years x months. Column 1 estimates the two-tailed model
(Eq.(5)) using hot days (>75°F) and cold days (<50°F). Columns 2—4 replace the outcome variable accordingly.
Rainy days are controlled for. The regressions are weighted by the log of Ul-covered employment; standard
errors clustered by state. Source: UI recipients are constructed by aggregating the Weekly Claims Data at
the monthly level, while claimed weeks, compensated weeks, benefits paid, and Ul-covered employment are
constructed from the Monthly Program and Financial Data, both produced by the Employment and Training
Administration of the U.S. Department of Labor.
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Simulated climate impacts on UI recipiency. Analogous to the unemployment impacts in
Figure 4, Figure A-14 illustrates simulated impacts on insured unemployment. We use a two-
tailed model (Eq.(5)) that includes hot days (>75°F) and cold days (<50°F) with lags up to
two months. By constructing a counterfactual in which all days are normal over 1990-2019, we
quantify the contribution of extreme temperature. Figure A-14a reports impacts over 1990-2019
by temperature type and by Northern and Southern states. By constructing a counterfactual in
which temperature shocks remain at their 1950s-70s averages, we then assess how much climate
change has shifted insured unemployment in subsequent decades. Figure A-14b shows impacts
for the 1980s, 1990s, 2000s, and 2010s relative to the 1950s—70s climate.

Figure A-14: Simulated Impacts on Insured Unemployment

(a) Impacts of Extreme Temperatures on the Insured Unemployment Rate (over 1990-2019)
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Notes: Simulations are based on a two-tailed model (Eq.(5)) that includes hot days (>75°F) and cold
days (<50°F) with lags of up to two months. An analogously lagged series of rainy days is controlled
for, along with state fixed effects and year-month fixed effects. Regressions are weighted by the log
of Ul-covered employment. Panel (a): Monthly exposure to hot days and cold days over 1990-2019
is aggregated using a weighted sum with the vector of lagged coefficients. Southern states include the
Southeast (VA, NC, SC, GA, AL, FL), South (TX, LA, MS, AR, OK, KS), Southwest (AZ, NM, UT,
CO) and West (CA, NV). Northern states comprise the remaining contiguous U.S. states, including
D.C. Panel (b): Decade-specific differences in average monthly exposure to hot and cold days, relative
to the 1950s-1970s average, are aggregated using a weighted sum of lagged coeflicients. Decades are
defined as 1980-1989 (1980s), 1990-1999 (1990s), 2000-2009 (2000s), and 2010-2019 (2010s).
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Within-year climate impacts. As in the earlier exercise on unemployment rate in Figure A-12,
Figure A-15 revisits the simulated impacts on monthly insured unemployment rate. Using a
two-tailed model (Eq.(5)) that includes hot days (>75°F) and cold days (<50°F) with lags of
up to two months, we apply the same simulation procedure as in Figure A-14. Figure A-15(a)
shows the simulated climate impacts on insured unemployment rate over 1990-2019. Reflecting
larger estimated coefficients for cold days, we find that the climate effects are concentrated
in winter (Q1). Figure A-15(b) shows the simulated impacts of climate change between the
1950s-70s and 2000-2019. Fewer cold days in non-summer quarters (Q1-Q2, Q4) reduce insured

unemployment, nearly offsetting those from more hot days outside winter (Q2-Q4).

Figure A-15: Simulated Impacts on NSA Insured Unemployment Rate across Months

(a) Temperature impacts (b) A Temperature impacts
(from 1950s—70s to 2000-2019)
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Notes: Simulations are based on a two-tailed model (Eq.(5)) that includes hot days (>75°F) and cold
days (<50°F), with lags of up to two months. An analogously lagged series of rainy days is controlled
for, along with state fixed effects and year-month fixed effects. Regressions are weighted by the log
of Ul-covered employment. Panel (a): Monthly exposure to hot days and cold days over 1990-2019
is aggregated using a weighted sum with the vector of lagged coefficients. Panel (b): A difference of
average monthly exposure to hot days and cold days between 1950-1979 and 2000-2019 is aggregated
using a weighted sum with the vector of lagged coefficients.

A-25



	Introduction
	Data and Model
	Weather and Climate
	Unemployment
	Seasonal Regularity in Unemployment
	Model

	Results
	Robustness
	Quantitative Assessment

	Mechanism
	Consequences for Unemployment Insurance
	Conclusion
	Appendix: Data
	Climate Change
	Unemployment

	Appendix: Empirical Analysis
	Robustness
	Auxiliary Analyses

	Appendix: Quantitative Assessment
	Appendix: Mechanism
	Appendix: Consequences for Unemployment Insurance

