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Abstract

Many real-world negotiations are persistently delayed, yet imposing deadlines is costly

because it induces inefficient separations. Do all deadlines in one-on-one market transac-

tions need to be perfectly credible? To improve trade efficiency, I propose a mechanism that

introduces an intermediate, imperfectly credible deadline to facilitate agreement. Using a

canonical seller--buyer dynamic bargaining model with a credible deadline, I analytically

characterize the optimal degree of credibility of such a deadline that maximizes trade effi-

ciency, leading to early agreements without triggering separations. Under a non-zero risk

of separation, the seller is tempted to discount the price to secure a payoff, while the buyer

is more likely to accept at the intermediate deadline because pricing resembles ultimatum

offers. A laboratory experiment provides direct evidence of the mechanism’s effects that

extend beyond the theoretical benchmark.
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1 Introduction

Many negotiations are persistently delayed, and therefore inefficient. A classical institution

used to limit endless delay is a credible deadline. Typical labor disputes close within several

months, often followed by an institutional deadline of strikes or lockouts.1 Many civil and

criminal pretrial disputes are settled at the eleventh-hour, just before a legal deadline for filing

suit.2 Sovereign debt renegotiations also often come to a close just before a debt repayment

deadline.3 At first glance, deadlines have the virtue of enforcing agreements within a time

limit (see Roth (1995) for “deadline effects” in lab experiments). By contrast, however, the

same deadlines can be fatal if agreements are not reached. About 12 percent of labor disputes

end in strikes and lockouts (Cramton and Tracy (1992)). Civil and criminal cases often enter

costly formal trials after pre-trial disputes. Sovereign debt renegotiations sometimes end in

catastrophic default by debtor countries.

Motivated by the substantial costs of deadline-induced agreement breakdowns, I propose

a bargaining mechanism that introduces an intermediate, stochastic deadline to improve trade

efficiency in one-on-one bargaining. I start with a seller–buyer bargaining model with one-

sided, incomplete information under a deadline (Sobel and Takahashi (1983)).4 Consider a

seller (he) who bargains for a durable good with a buyer (she) with a private value under an

exogenous N-period credible deadline. The seller knows that the buyer’s private value ranges

from 0 to 1, and both know that the seller’s marginal cost is 0. The seller offers a price in

every period, and the buyer accepts or rejects. Bargaining continues until the buyer accepts;

when the deadline arrives, both fall back to outside options of 0. In a unique equilibrium, the

price falls over time without any commitment to a single price (reflecting intrapersonal price

competition, or simply, “self-competition”; see, e.g., Güth (1994)), and a delay occurs as a

result of screening private information: buyers with lower private values take longer to reach

an agreement, and some buyers reject all offers, leading to inefficient breakups.

1Using data on labor contract disputes from 1970–1989, Cramton and Tracy (1992) document that holdouts
are the most common form of dispute, lasting about two months.

2See Williams (1983) for last-minute agreements in civil litigation and Spier (1992) and Sieg (2000) for cases
in plea bargaining.

3In 2015, Greece faced a July 20 deadline to repay its debts to international creditors. Negotiations were
narrowly concluded eight days before the deadline. See Benjamin and Wright (2009) for a history of sovereign
debt renegotiations and defaults.

4This bargaining framework with deadlines has been widely applied to real-world bargaining scenarios, in-
cluding Tracy (1987), Hart (1989), and Cramton and Tracy (1992) for labor disputes, Bebchuk (1984) and Silveira
(2017) for plea bargaining, and Bai and Zhang (2012) for sovereign debt renegotiations.
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Suppose that a stochastic deadline is exogenously imposed on a particular interim day

n∗ < N.5 This complementary deadline acts as a stochastic “time bomb”: if the agreement

is not reached on that day, the pair may break up with a conditional probability of α ∈ [0,1] and

receive outside options of 0, and otherwise bargaining continues.6 The implications of impos-

ing a “time bomb” for the efficiency—defined as the sum of both parties’ ex ante payoffs—are

ambiguous. If the “time bomb” is realized, efficiency is clearly harmed by foregone gains from

trade. In contrast, the stochastic deadline can improve trade efficiency by acting as a catalyst

for earlier agreement. In a well-designed “time bomb” regime, I show that the latter dominates

the former. In particular, when both parties are sufficiently patient, I demonstrate that there

exists an interior deadline credibility α∗ ∈ (0,1) that maximizes ex ante efficiency.

To understand the mechanics behind this, first consider the buyer’s simple response to the

stochastic deadline: she is likely to buy earlier due to the risk of separation. A parameterized

model shows that agreements are disproportionately likely to occur at the stochastic deadline

(see Figure 2a for a purchase schedule over a variety of α). One could view this as a stochastic

analog of the canonical deadline effect (Güth, Schmittberger and Schwarze (1982)).

What is nontrivial is the seller’s price discounting: the price schedule may involve early

discounts, starting from a lower opening price. The key mechanism is that a stochastic dead-

line allows low-valuation buyers—who typically delay agreement—to credibly signal their low

valuation when the deadline passes without being realized. To understand this, suppose that

a rejection occurs at the stochastic deadline with a reasonably large α . Then, the seller infers

that the buyer’s private value is not high enough to induce a purchase, and his belief about

the buyer’s valuation becomes substantially lower than when α = 0. Therefore, the forward-

looking seller is forced to discount from the start, which would further facilitate earlier agree-

ments through “self-competition” between pre- and post-bomb periods. This seller’s discount is

perhaps surprising in light of a standard ultimatum game, where the seller is typically expected

to exploit the buyer.

My theoretical insight, based on a mathematically equivalent formulation of multi-buyer

5A stochastic deadline system could function as a discipline to complement a conventional deadline. In civil
litigation, a private or public arbitrator (e.g., insurance companies or courts) could intervene sometime before the
deadline as a preliminary injunction. Prior to labor contract disputes, each party could formulate an ex ante bar-
gaining rule that an intermediary (e.g., stakeholders) could potentially settle at an earlier negotiation. In sovereign
debt negotiations, a group of creditors and a debtor could join a commitment in which a third party (e.g., the
International Court of Justice) could intervene in the negotiations.

6α is a conditional probability of separation if a price is rejected in period n∗. If α = 0, this is nothing more
than an initial setting. If α = 1, this becomes shorter-horizon bargaining with a deadline at N = n∗.
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markets in durable goods monopoly, revisits the accepted wisdom surrounding the famous

Coase (1972) conjecture on bargaining horizons and market efficiency.7 Coase argued that

one-sided asymmetric information without a deadline leads to an immediate agreement favor-

able to the informed buyers. Thus, as the bargaining horizon lengthens, efficiency is restored.

Two polar cases succinctly characterize this intuition. In a one-shot ultimatum game,8 bargain-

ing suffers from the greatest efficiency loss under maximum monopolist power. In contrast,

under an infinite horizon, as Coase conjectured, the monopolistic market achieves full effi-

ciency with an immediate agreement. A stochastic deadline breaks the conventional link: the

horizon appears shorter, yet efficiency may improve in expectation.

To provide proof of concept, I conducted a controlled laboratory experiment to empirically

test the validity of the stochastic deadline. Building on the experimental literature on a multi-

period bargaining experiment for sellers and buyers (à la Reynolds (2000)), I implemented

a simplified model in a computer laboratory and collected approximately 1,200 bargaining

observations from 62 subjects. Subjects were randomly assigned to a bilateral bargaining game

(N = 6) under different levels of credibility at a predetermined stochastic deadline (n∗ = 3).

The experiment broadly supports the effectiveness of a stochastic deadline. Consistent

with the key predictions of the model, I find that imposing a stochastic deadline increases

trade efficiency, restrains pricing, and favors the buyer. Intriguingly, even when the stochastic

deadline approaches full credibility, these effects remain pronounced, contrary to the model’s

predictions. To illustrate this pattern, I compare submitted prices and buyers’ decisions with

their theoretical benchmarks. Under the conventional deadline regime (α = 0), most (89%)

of buyers’ reactions are theoretically reasonable, but notably, 59% of prices are categorized

as “demanding”—sometimes exceeding the ultimatum price.9 Such “demanding” pricing has

been documented by previous bargaining experiments (Rapoport, Erev and Zwick (1995);

Reynolds (2000)).

I find that sellers discount prices at the stochastic deadline much more prominently than

predicted by the model—a novel finding in the literature that is nevertheless reminiscent of

the long-standing, firmly established evidence from ultimatum game experiments (see e.g.,

7This conjecture is formulated as “durability (or extended bargaining horizon) attenuates monopolistic distor-
tions”. See, e.g., Güth and Ritzberger (1998).

8My model with N = 1 can be framed as a variant of an ultimatum-offer game under incomplete information.
9Prices are classified as “demanding” if they are at least 20% above the theoretical price. Buyer decisions

are considered “reasonable” if they follow the model-implied cutoff rule (see Section 4 for detailed classification
criteria).
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Güth and Kocher (2014)).10 As a result, a significant fraction of sellers’ pricing, especially

on the stochastic deadline, becomes theoretically reasonable, or even excessively discounted.

Based on the discussion of potential behavioral forces at play (see Section 4), I conclude that

a stochastic deadline mitigates the upward bias in sellers’ pricing under conventional deadlines

and encourages buyers to agree earlier; consequently, it enhances trade efficiency.

Related literature: This paper proposes a bargaining mechanism to complement the con-

ventional deadline. First, by enriching the deadline structure, my paper theoretically and ex-

perimentally extends existing work on last-minute agreements before a deadline (“deadline

effects”) in one-on-one bargaining. My finite-horizon bargaining model builds on Sobel and

Takahashi (1983) and Fudenberg and Tirole (1983), although the role of deadlines in trade ef-

ficiency is not explicitly considered.11 For pretrial civil litigation, Spier (1992) uses a model

similar to mine and derives an agglomeration of trade at the trial deadline.12 More recently,

Fuchs and Skrzypacz (2013) theoretically explore the impact of outside options after breakups

on deadline effects in continuous time limits. Compared to Fuchs and Skrzypacz (2013), my

model normalizes outside options and highlights the efficiency implications of the proposed

pre-deadline mechanism in discrete time, which I directly test in the laboratory.

On the empirical side, my paper contributes to the experimental bargaining literature on

deadlines, surveyed by Roth (1995), with more recent studies including Gneezy, Haruvy and

Roth (2003), Haruvy, Katok and Pavlov (2020), and Karagözoğlu and Kocher (2019).13 In-

deed, deadline effects are firmly established across time horizons, diminishing-pie environ-

ments, and alternating-role protocols (Roth, Murnighan and Schoumaker (1988); Güth, Levati

and Maciejovsky (2005)). My experiment confirms that the deadline effect emerges even when

a deadline is stochastic: as the stochastic deadline becomes more credible, a larger fraction of

10On average, ultimatum game experiments show that proposers offer between 30% and 50% of the money, and
more than half of the opponents reject proposals with their share below 20% (see Camerer (2003)).

11Some theoretical work on deadlines explores the effect of strategic use of deadlines (Ma and Manove (1993);
Fershtman and Seidmann (1993); Özyurt (2023)). In contrast, my paper seeks to improve the institutional role of
deadlines, which are typically set by a market designer.

12For different protocols with two-sided incomplete information, Ponsati (1995) and Damiano, Li and Suen
(2012) derive an atom of trade at the deadline in concession games.

13Karagözoğlu and Kocher (2019) show that deterministic deadlines under severe time pressure (90 seconds)
increase disagreement rates in an unstructured bargaining experiment, particularly when parties hold conflicting
fairness reference points and expect an opponent to concede. By contrast, my setting features a structured envi-
ronment with one-sided offers and no time pressure. Instead, I introduce a stochastic termination hazard, which
reduces the value of delay and thereby increases agreement rates.
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negotiations is completed at the stochastic deadline, consistent with the model.14

Second, and more substantively, the paper theoretically revisits the conventional wisdom of

the Coase conjecture (Coase (1972)) in durable-goods monopoly with a continuum of buyers

(from Stokey (1981) and Bulow (1982); later formalized by Gul, Sonnenschein and Wilson

(1986), Ausubel and Deneckere (1992), and Thépot (1998)).15 The conjecture essentially states

that “durability hurts monopoly power,” suggesting a positive relationship between the time

horizon (interpretable as durability) and market efficiency in monopolistic markets (see Güth

and Ritzberger (1998) or Sobel and Takahashi (1983) Theorem 6).16 A general consensus in

the literature is that efficiency is significantly greater for longer bargaining rounds (or, at the

extreme, under an infinite horizon) compared to a snapshot ultimatum game. The stochastic

deadline proposed in this paper challenges the conventional link: seemingly shorter bargaining

periods may generate higher ex ante trade efficiency (see Proposition 2).

Third, a stochastic deadline is mathematically equivalent to the classical idea of random

breakdown in discrete periods (e.g., Binmore, Rubinstein and Wolinsky (1986); Rubinstein

and Wolinsky (1985)). Early models assume perfect information and no equilibrium delay, and

thus cannot account for real-world bargaining delay. Recent bargaining models use random

breakdown to introduce a stochastic deadline to generate delay, and show that random break-

down can facilitate trade, albeit through mechanisms different from mine. Using an analogous

seller-offer model with one-sided incomplete information and an infinite horizon, Fuchs and

Skrzypacz (2010) embed the stochastic arrival of outside options as random breakdown and

show that a larger arrival rate can increase the efficiency. Using the Abreu and Gul (2000)

model with incomplete information about behavioral types, Fanning (2016) rationalizes the

deadline effect by mimicking the behavior of stubborn types to build reputation until the dead-

line. However, the one-sided incomplete information in Fanning (2016)’s model generates no

delay and yields full efficiency in contrast to my model.17 Simsek and Yildiz (2016) introduce

optimism for future bargaining power after some events (e.g., elections) as a source of delay.

14Contrast a theoretical purchase schedule on Figure 2a with the lab agreements in Table 1.
15The departure from the conjecture is also a deep theoretical topic (e.g.; Bagnoli, Salant and Swierzbinski

(1989); Fuchs and Skrzypacz (2010); Board and Pycia (2014)). Most of these papers assume an infinite horizon
without deadlines. Once a deadline is imposed, monopoly power is restored.

16Bond and Samuelson (1984) show that the Coase conjecture can be circumvented if the good depreciates
faster, thereby restoring monopoly power.

17See the “Related Literature” section in Fanning (2016) for a discussion of the differences between the Fanning
model and standard one-sided incomplete-information models, including mine (e.g., Spier (1992); Fuchs and
Skrzypacz (2013)).
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They explain that a lower continuation value after a given event (analogous to a “time bomb”

in my model) induces both parties to agree before the event, thereby creating a deadline ef-

fect. These models assume that the arrival of the deadline is stochastic, whereas in my model,

the realization of breakdown is stochastic, while the timing is externally imposed by market

designers.

Fourth, this paper borrows from and extends the experimental literature on durable goods

monopoly trades between sellers and buyers (Rapoport, Erev and Zwick (1995); Reynolds

(2000)).18 For the most part, sellers’ prices in these experiments systematically deviate from

model predictions, often being higher than predicted, which is also observed in my results.

In particular, opening prices are generally higher than the predicted level and in some cases

exceeds the static monopoly benchmark (Rapoport, Erev and Zwick (1995)). As a novel find-

ing, my experiment documents a behavioral regularity that has not been reported before but

echoes the long-standing tradition of ultimatum game experiments (for a survey, see Camerer

(2003) and Güth and Kocher (2014)): as a stochastic deadline becomes more credible, the

seller’s “demanding” price adjusts to a “reasonable”—or even “cooperative”—level.19 I find

that when deadline credibility is below 40%, increases in credibility do not significantly reduce

prices. Once credibility reaches 50% or higher, however, sellers begin to make salient conces-

sions: 61% of opening prices (versus 74%) and 51% of all prices (versus 59%) are classified

as “demanding,” relative to the no-stochastic-deadline cases (see Figure B.5 in the Supplemen-

tary Material). These results suggest that the stochastic deadline mitigates the systematic bias

toward “demanding” pricing observed under deterministic, credible deadlines.

Layout: The paper is organized as follows: Section 2 presents a stochastic deadline bargain-

ing framework under a conventional deadline and characterizes the unique equilibrium. It then

examines overall trade efficiency and the sensitivity of the distributional outcome to higher

18Cason and Reynolds (2005) study a two-period special case of my framework, find little sensitivity of open-
ing prices to continuation probabilities, and develop boundedly rational models to explain these deviations (see
“Related Experiments” in the Supplementary Material for details). Outside of durable goods trades, Sterbenz
and Phillips (2001) introduce random delays to proposals in their pie-split game experiments, rather than ran-
dom breakdowns of trades, as in my setting. Bolton and Karagözoğlu (2016) study pie-split games with varying
commitment capabilities, featuring hard leverage (binding commitment) in the ultimatum game versus stochas-
tic leverage (appealing to a focal point) in unstructured negotiations. Other related experiments include Güth,
Ockenfels and Ritzberger (1995), Cason and Sharma (2001), Srivastava (2001), and Güth, Kröger and Normann
(2004).

19We classify prices as demanding: > +20%; reasonable: ±20%; and cooperative: < −20% relative to the
theoretical benchmark. See Section 4 for details.
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levels of deadline credibility. Comparative statics of the ex ante separation probability and the

delay to agreement are provided. Next, Section 3 presents the design and results of the labora-

tory experiments. The actions of both players are compared with their theoretical benchmarks

and behavioral interpretations are provided to reconcile the gap. Section 4 concludes the paper.

The Appendix contains the proofs of the main theoretical results.

2 Model

This section formalizes a stochastic deadline (or, for generality, a series of stochastic deadlines)

on a seller–buyer bargaining model with one-sided incomplete information under a determin-

istic deadline.

2.1 Setup

A seller (“he”) sells an indivisible durable good to a buyer (“she”) with an unknown private

value v ∈ [0,1] for the good. I assume that v is distributed according to a publicly shared

cumulative distribution function F(v) = vσ (σ > 0).20 The durable good has a zero marginal

cost, which is commonly known. Assume that both the seller and the buyer are rational and

risk neutral.

Time is measured by discrete and finite periods with n∈ {1,2,3, · · · ,N}, with an exogenous

institutionally set deadline is set at period N < ∞. At the beginning of the period n, the seller

makes an offer Pn. The buyer then immediately accepts or rejects the offer. If the buyer accepts

the price at the end of period n, the game ends: the seller gets δ n−1Pn , and the buyer gets

δ n−1(v−Pn), where δ ∈ (0,1) is a periodic discount factor. If the buyer continues to reject the

price until n = N, the game also ends: both receive 0 as an outside option. The seller’s strategy

in period n, p({Pt}t=n−1
t=1 ,N), is a mapping from the history of n−1 rejected prices, {Pt}t=n−1

t=1 ,

and the given horizon N, to the current period offer Pn.21 The buyer’s strategy for type v in

period n, q({Pt}t=n−1
t=1 ,v,N), maps the history of prices (including the current one), type v, and

horizon N to a binary accept–reject decision.

20This distributional assumption is often made for analytical convenience to solve a dynamic bargaining game
(see Ausubel and Deneckere (1992); Fuchs and Skrzypacz (2013)).

21At n = 1, no history is available, so an opening price is simply p(Ø, N − 1), where Ø denotes the empty
history.
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Stochastic deadlines Suppose that a series of exogenous M (M < N) time stochastic dead-

lines are embedded at periods n∗d ∈{1, · · · ,N−1} (d ∈{1, · · · ,M};d is an order of stochastic deadlines)

before the deadline period N. Deadline credibility is captured by a conditional separation risk

αd ∈ [0,1] at the end of each stochastic deadline period n∗d . This implies that if a proposal is

rejected in period n∗d , the negotiation ends with probability αd and both receive outside options

0, but continues to period n∗d +1 with probability 1−αd .

I introduce M > 0 for generality. The case M = 1 is the simplest specification that captures

the main insights of the model and is illustrated through simulations (Figures 2, 3, and 4) and

tested in the laboratory.

𝛼!

𝑛!
∗	𝑛$

∗	 𝑛%
∗	⋯	

	

𝛼#

𝛼$
periods

⋯	
	1 2 ⋯	
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⋯	
	 𝑁		

Conditional
breakdown
probability

Figure 1: Multiple Stochastic Deadlines under the Deterministic Deadline

2.2 Equilibrium

A complete strategy for the seller P = {p({Ps}s=t−1
s=1 ,N)}t=N

t=1 determines the prices to offer

in each period after each possible price history. In dynamic bargaining games, the types of

buyers remaining after any history, including off-equilibrium prices, form a truncated distri-

bution. This is due to the famous skimming property,22 such that in any equilibrium for any

current price Pn and after any history of offered prices {Pt}t=n−1
t=1 , there exists a cutoff type

Cn = c(Pn,{Ps}s=n−1
s=1 ,N) such that the buyer accepts if v ≥Cn and rejects otherwise. Since it

is more costly for high types to delay trading than for low types, the buyer’s best responses

must satisfy the skimming property. Therefore, without loss of generality, buyer’s strategy is

reduced to a cutoff strategy by C = {c(Pt ,{Ps}s=t−1
s=1 ,N)}t=N

t=1 .23

Let Kn({Ps}s=t−1
s=1 ,N) be the highest remaining type in equilibrium in period n as a function

22See, e.g., Muthoo (1999), Lemma 9.3.
23Both parties are permitted to use mixed strategies, but in a unique equilibrium, the seller’s pricing turns out to

be deterministic and the buyer’s mixed strategy is rationalizable only when the private value is equal to the cutoff.
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of a history of prices and remaining periods (with K1(Ø,N) = 1). Directly from the buyer’s

cutoff strategy, the belief system K = {Kt}t=N
t=1 = {Kt({Ps}s=t−1

s=1 ,N)}t=N
t=1 is characterized by Kn

such that

K1 = 1, Cn = Kn+1 (∀n ∈ {1, · · · ,N−1}), (1)

suggesting that the cutoff at period n serves as an upper bound type at period n+1. Then,

let [0, Kn({Pt}t−1
t=1,N− n)) be a range of possible types at period n, and both players know Kn

at period n as an upper bound of the private value v. Then, using (P,C) and K, I introduce

a perfect Bayesian equilibrium (for theoretical foundations, see Sobel and Takahashi (1983);

Fudenberg, Levine and Tirole (1985)).

Definition 1. A pair of strategies (P,C) and a belief system K constitute a perfect Bayesian

equilibrium of the game if their actions maximize their expected payoffs at all information sets

and if a belief system is consistent with the Bayes rule whenever possible.

The model is solved by backward induction from the deterministic deadline. As shown

formally in the Appendix, under my distributional assumption, the seller’s problem admits a

unique price in each period for any upper-bound type Kn induced by (P,C) and the history.

Therefore, the continuation equilibrium is unique and depends on the history only via the state

variable Kn and the remaining rounds N − n. This conveniently simplifies the notation: the

current price and the cutoff are denoted by Pn = p(Kn,N−n), Cn = c(Pn,Kn,N−n), and Kn is

given by (1).

Let Vn(Kn,N) be the expected continuation payoff of the seller given Kn with N− n time

remaining rounds in period n and strategies (P,C). For n < N, Vn(Kn,N − n) is recursively

given by

Vn(Kn,N−n)= (
F(Kn)−F(Cn)

F(Kn)
)︸ ︷︷ ︸

probability of agreement

p(Kn,N−n)+
F(Cn)

F(Kn)︸ ︷︷ ︸
probability of rejection

ηnδVn+1(Kn+1,N−(n+1)),

(2)

where ηn is a risk adjustment factor attached to a discount factor δ such that ηn = 1−αd (n =

n∗d) and ηn = 1 (n 6= n∗d). For a terminal deadline n = N,

VN(KN ,0) = (
F(KN)−F(CN)

F(KN)
)︸ ︷︷ ︸

probability of agreement

p(KN ,0) (3)
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holds. Given the expected path of prices, the buyer’s strategy c must satisfy the following as

the best response:

For n < N, Cn−Pn(Kn,N−n)︸ ︷︷ ︸
payoff of agreement today

= ηnδ (Cn−Pn+1(Kn+1,N− (n+1)))︸ ︷︷ ︸
payoff of agreement tomorrow

(4)

For n = N, CN−PN(KN ,0)︸ ︷︷ ︸
payoff of agreement at the hard deadline

= 0︸︷︷︸
outside option

. (5)

Intuitively, (4) implies that a marginal buyer with value v =Cn is indifferent between buy-

ing today and tomorrow.24 Following the proof strategy of Sobel and Takahashi (1983) and

Fuchs and Skrzypacz (2013), the action schedules {(Pn,Cn)} of the players are periodically

determined by a pair of their bargaining powers, captured by sequences {(An,Bn)} as follows.

Proposition 1. [Unique equilibrium paths and bargaining powers]

The game has a unique perfect Bayesian equilibrium. Given the state variable {Kn} at

period n, the equilibrium path of {(Pn,Cn)} (n∈ {1, · · · ,N}) uniquely exists and is sequentially

characterized as

Pn = AnKn and Cn = BnPn, (6)

where the following difference equations recursively characterize {An} and {Bn}:
An = ((σ +1)−σηnδAn+1Bn)

−1
σ /Bn (n ∈ {1, · · · ,N−1})

Bn = {1−ηnδ (1−An+1)}−1 (n ∈ {1, · · · ,N−1})

AN = (1+σ)
−1
σ , BN = 1.

(7)

The respective value functions of the seller and the buyer, Vn and Wn, are characterized as

follows by {An}:

Vn = AnKnE(v), Wn = (1− σ +2
σ +1

An)KnE(v), (8)

where E(v) =
σ

σ +1
is an ex ante expected private value.

[Proof] See the Appendix.

24One can see that the skimming property holds such that a relative benefit of buying today over tomorrow (i.e.,
a difference of the left and right sides in (4)) is strictly increasing in Cn.
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Due to the recursive structure of the model, the seller and buyer choose Pn and cutoffs Cn

based solely on the state variable Kn, independent of past actions at equilibrium. Furthermore,

the analytical convenience of the functional form F(v) = vσ implies that both Pn and Cn are

linear in Kn, with An and Bn, which are derived as functions of the primitives δ ,σ ,αd,n∗d,N

(see Equations (A.2) and (A.4) in the Appendix for the recursive formulas).

Intuitively, An and Bn are the period-n bargaining powers of the seller and buyer, respec-

tively. A higher An increases the price, and a higher Bn increases the period-n cutoff. Analogous

to prices and cutoffs, the value functions Vn and Wn of the seller and buyer are also linear in

the state variable Kn. V1 and W1 capture the ex ante surplus of both players, derived from the

ex ante maximum gains from trade E(v) =
σ

σ +1
. How do the two players behave along the

equilibrium path?

Purchase schedule: The buyer’s decision is characterized by the cutoff Cn or the minimum

value she is willing to accept given the price Pn. Figure 2a shows simulated paths of cutoffs

under a parameterized model (N = 6,M = 1,n∗1 = 3,δ = 0.98,σ = 1). The results show that

buyers with private values higher than the cutoff curve are willing to trade. The buyer’s cutoff

curve drops sharply not only at n = 6 (the canonical “deadline effect”), but also at n = 3 when

α1 > 0. The drop at n∗1 = 3 may reflect a deadline effect associated with the stochastic dead-

line. As the stochastic deadline becomes more credible, the magnitude of purchase concessions

increases: a buyer with a given private value is more likely to agree at the stochastic deadline.25

Price schedule: Given the buyer’s concession at the stochastic deadline, one would expect

the seller to exploit this by raising the price. Using the same parameterized model, Figure 2b

illustrates the simulated price path. Notice that the seller makes a striking price concession at

n= 4 just after the stochastic deadline. This large sale is novel in my stochastic deadline regime

as a direct consequence of the deadline effect at the stochastic deadline discussed above. Since

the seller knows that the buyer’s cutoff drops at n∗1 = 3, he infers that the remaining buyer value

at n = 4 is significantly lower than α1 = 0 (recall that K4 =C3 per (1)). Since the buyers of the

lower type are screened out by the deadline effects (Figure 2a), the seller responds by lowering

the price: the prices of the second half periods (P4,P5,P6) decrease monotonically with higher

25In the context of durable goods monopoly under product market of continuum value of buyers, this cutoff
drop could be interpreted as a significantly larger distribution of purchases.
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Figure 2: Equilibrium Dynamics across Levels of Deadline Credibility
Note: The model is simulated with an experimental setting (N = 6; M = 1; n∗1 = 3) and baseline parameters
(δ = 0.98; σ = 1). Deadline credibility is zero when α1 = 0, small when α1 ∈ {0.05,0.1,0.2,0.3}, medium when
α1 ∈ {0.4,0.5,0.6}, large when α1 ∈ {0.7,0.8,0.9}, and perfect when α1 = 1. I simulate theoretical average
prices within the risk category, weighted by the number of experimental observations of each environment (see
Section 3.1 for an experimental setup). The shading shows deadline effects for a buyer at n ∈ {3,6} (Figure 2a),
and a conspicuous sale at n = 4 (Figure 2b).

α1. In other words, the stochastic deadline serves as a signaling device of low private value,

once the offer at the stochastic deadline is rejected. Therefore, the forward-looking seller starts

with a lower opening price, which shifts the overall price schedule downward. Compared to the

case with no stochastic deadline (α1 = 0), Figure 2b shows that the seller discounts the opening

price for low and medium deadline credibility. In fact, the simulation shows that for most of the

range of imperfectly credible stochastic deadlines (α1 ∈ (0,0.789]), the seller’s first-half prices

(P1,P2,P3) are lower than those in the conventional deadline regime (α1 = 0). However, when a

stochastic deadline becomes highly credible, the canonical strategic interaction dominates: the

seller raises the price at the stochastic deadline. I formalize this pricing behavior as follows.

Lemma 1. [The seller’s opening price] Suppose the players are sufficiently patient. Then, for

every d ∈ {1, · · · ,M}, there exists α̂d ∈ (0,1) which uniquely minimizes an opening price P1

s.t.

α̂d =
δA2

n∗d+1− (1−δ ){(1+σ)− (2+σ)An∗d+1}
δ (1−An∗d+1)(1+σ −An∗d+1)

, (9)

where An∗d
is recursively characterized by function of the primitives Anδ ,σ ,αd,n∗d and N for

d ∈ {1, · · · ,M} by (7).
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[Sketch of the Proof ] First, one obtains the first-order condition (F.O.C.) as

dP1

dαd
=

Recall P1 = A1

dA1

dαd
=− E(v)

(σ +1)2
dA1

dAn∗d︸ ︷︷ ︸
(> 0) See the Appendix

dAn∗d
dαd

= 0. (10)

The F.O.C. (10) is reduced to
dAn∗d
dαd

= 0. By solving for αd, one obtains the desired α̂d in

(9). Furthermore, the second order condition (S.O.C.) also holds, so that

d2P1

dα2
d
=− E(v)

(σ +1)2
dA1

dAn∗d︸ ︷︷ ︸
independent of αd

d2An∗d

dα2
d

< 0. (11)

� (Detailed derivations of the F.O.C. and S.O.C. are provided in the Appendix.)

Because the opening price captures the seller’s ex ante bargaining power (recall that P1 =

A1), the theorem suggests that imperfect credibility at each stochastic deadline may suppress

monopoly power.26 As illustrated in Figure 2b, the resulting nonlinearity reflects two forces at

work. The first is self-competition under stochastic deadlines. If the seller anticipates that he

will have to discount the price when the risk is not realized, he is tempted to lower the price at

the outset.27 However, as the stochastic deadline becomes nearly certain and the game resem-

bles an ultimatum game, conventional strategic interaction dominates, leading to the gradual

restoration of exploitative monopoly power. The parameterized model in Figure 2b suggests

that pricing is discounted across periods for a substantial range of deadline credibility.

2.3 Efficiency

The key theoretical question is how total trade efficiency responds to the credibility of each

stochastic deadline. Total trade efficiency—the primary object of interest—is given by the sum

of the value functions at the opening period, V1 +W1, as defined below.

26Importantly, the model assumes that both the number M and the timing nd of stochastic deadlines are exoge-
nously imposed to isolate the role of deadline credibility. A natural extension would allow these parameters to
vary within a more general deadline institution. Such flexibility in deadline design is left for future research.

27If players are not patient enough, however, self-competition is dominated by strategic interaction. This is be-
cause, as the bargaining becomes more frictional, sellers place less weight on future market outcomes and behave
more myopically in exploiting the current market. Consequently, the opening price increases monotonically with
the degree of deadline credibility. The finding is consistent with Güth and Ritzberger (1998), who show that the
Coase conjecture does not hold when players’ patience is low.
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Definition 2. [Trade efficiency]

The ex ante trade efficiency U is defined as the sum of the players’ ex ante expected payoffs

such that U ≡V1 +W1.

As a direct consequence of Lemma 1, the main theoretical result of the paper is stated

below.

Proposition 2. [Efficiency gain from imperfect deadline credibility]

Suppose that the players are sufficiently patient. Then, for every d ∈ {1, · · · ,M}, there exists

α̂d ∈ (0,1) (specified by (9)) which uniquely maximizes the efficiency U, as well as the level

W1, and the distributional share W1/U of the buyers’ expected surplus.

[Proof ] Using (8), it can be seen that the efficiency U and the level of buyers’ expected

surplus W1 are strictly decreasing in the opening price P1 such that

U ≡V1 +W1 = (1− P1

σ +1
)E(v) (12)

and

W1 = (1− σ +2
σ +1

P1)E(v). (13)

The buyer’s share of expected surplus is W1/U =
(σ +1)− (σ +2)P1

(σ +1)−P1
. W1/U is also strictly

decreasing in P1, since
d(W1/U)

dP1
=−(σ +1)2 < 0 (14)

holds. The desired results follow directly from the proof of Lemma 1. �

The theorem states that, given the specific stochastic deadline at n∗d , imperfect deadline

credibility αd maximizes overall trade efficiency and the ex ante buyer surplus share. This

implies that the non-zero threat of separation may enhance trade efficiency by suppressing

monopoly power compared to the conventional deadline regime (αd = 0). In Figure 3, a param-

eterized model shows that overall efficiency is maximized at an interior credibility α̂1 = 0.28,

suggesting that efficiency is improved in most of the credibility range (α1 ∈ (0,0.789]) com-

pared to the case with no stochastic deadline (α1 = 0). In the parameterized case (N = 6, M =

1, σ = 1, δ = 0.98), imposing a stochastic deadline with optimal credibility, α̂1, enhances effi-

ciency by 2.5% relative to the deterministic deadline game (α1 = 0).
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Note that in this class of non-cooperative games under asymmetric information, trade ef-

ficiency is inversely related to the seller’s power (as confirmed by equation (12)). Therefore,

this inverted-U efficiency reflects the minimized seller power, as represented by the behavior of

the opening price, as shown in Lemma 1. Analogously, Proposition 2 shows that an efficiency

maximizer α̂d also maximizes the ex ante buyer surplus (W1) and the buyer’s surplus share

(W1/U). This is because both the level and the share of buyer surplus are decreasing functions

of the opening price(P1), which captures ex ante monopoly power (A1) (see (13) and (14)).

This insight echoes the mathematically equivalent durable-goods monopolist model, in which

total efficiency is positively related to consumer surplus and negatively related to monopoly

power.

efficiency gain

0.38
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

deadline credibility α1

ef
fi

ci
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Figure 3: Deadline Credibility and Trade Efficiency
Note: The efficiency U ≡ V1 +W1 is calculated based on (12). A model was simulated based on the analytical
formula with a baseline parameter of experiments N = 6, M = 1, σ = 1, δ = 0.98, and a single stochastic deadline
is set to n∗1 = 3. The vertical line is the optimal deadline credibility α̂1 = 0.28 and the upper bound of imperfect
credibility to increase the efficiency α1 = 0.789.

The theoretical results revisit the conventional wisdom in the literature on durable-goods

monopolists regarding the link between a time horizon specified by a deadline and market

efficiency. In line with the Coase conjecture (Coase (1972)), the monopolist loses the bulk of

his bargaining power under an unbounded horizon without a binding deadline. In my model,

this corresponds to the extreme case in which, as the horizon becomes infinite (N → ∞), U

converges to the maximum fraction of the total gains from trade E(v).28 At the other extreme

28Under δ = 0.98,σ = 1, and N→∞, the efficiency U increases to 0.469, which is closest to the total potential
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of a one-period ultimatum game (N = 1), the monopolist gains the most bargaining power

and minimizes efficiency. Note that if a buyer’s value is uniformly distributed (σ = 1), then,

perhaps surprisingly high, exactly half of the buyers cannot trade, since the price and the cutoff

are both 1/2. My model shows that in a multi-stage game (1 < N < ∞), a seemingly shorter

time horizon with imperfect credibility αd ∈ (0,1) at the d ∈ {1, · · · ,M}th stochastic deadline

partially restores trade efficiency by facilitate mutual concessions.

2.4 Efficiency Loss

The previous section shows that imposing a well-designed intermediate stochastic deadline

before a terminal deadline may improve trade efficiency. Nevertheless, the outcome remains

below the Pareto optimum. This section complements the efficiency analysis by examining how

the sources of efficiency loss—potential separation and frictional delay—vary with deadline

credibility. Operationally, I formally define the pair of efficiency losses as follows.

Definition 3. [Ex ante probability of separation and delay to agreement]

The ex ante probability of separation for a buyer is defined by

αdCn∗1︸ ︷︷ ︸
first threat period (d=1)

+
M

∑
d=2

((
M

∏
d′=2

(1−αd′−1)

)
αdCn∗d

)
︸ ︷︷ ︸

following threat periods (d≥2)

+
M

∏
d=1

(1−αd)CN︸ ︷︷ ︸
terminal period

. (15)

The ex ante delay to agreement is defined by

N

∑
n=1

n

(
n

∏
l=1

ηl

)
(Kn−Cn)︸ ︷︷ ︸

proportion of buyers of agreement at n

, (16)

where Cn and Kn are functions of the bargaining primitives, as characterized in (6) and (7),

respectively.

Based on Definition 3, the sensitivity of these two sources of inefficiency to deadline cred-

ibility is simulated and illustrated in Figure 4. The parameterized model shows that the ex ante

separation probability exhibits a nonlinear sensitivity. Consistent with the nonlinear sensitiv-

ity of trade efficiency to α1, as shown in Proposition 2, an appropriately designed deadline

gains from trade E(v) = 0.5. The monopoly power A1 decreases to the lowest value of 0.124, in contrast to the
static ultimatum maximum of 0.5 (see Figure A.1 for the simulation as N→ ∞).
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Figure 4a: ex-ante separation probability
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Figure 4b: delay to agreement

Figure 4: Ex ante Probability of Separation and Delay to Agreement
Note: (15) and (16) are simulated with N = 6, M = 1, σ = 1, δ ∈ {0.7,0.98}, and a single stochastic deadline is
set to n∗1 = 3. When M = 1, (15) is reduced to Cn∗1

α1 +(1−α1)CN .

credibility induces agreements that help avoid separations. Intriguingly, for most of the range

α1 ∈ (0,0.606], the probability of separation is lower than under the conventional deadline

regime (α1 = 0). However, when the stochastic deadline becomes highly credible, separation

goes beyond its role as a catalyst.29

Another proxy to capture bargaining frictions is the expected duration to reach an agree-

ment, as shown in Figure 4b. Since delays are only defined in samples in which agreements are

reached, the ex ante bargaining duration until agreement is expected to decrease in α1 regardless

of discount factors, contributing to another efficiency gain from the stochastic deadline. The

response of these proxies is also tested in laboratory experiments, as presented in the following

section.30

3 Laboratory Experiments

In the previous section, my model provides a theoretical possibility: embedding a stochastic

deadline at an earlier intermediate point may restore trade efficiency in bargaining under a

credible deadline. To provide proof of concept for the proposed mechanism, I conducted a

29If players are not sufficiently patient, however, the probability of separation monotonically increases with
deadline credibility, consistent with Proposition 2, because the breakdown risk no longer serves as an effective
catalyst for agreement.

30The analysis of delays to agreement is presented in Table B.3 of the Supplementary Material.

18



simple laboratory experiment, building on previous experiments on multi-period durable goods

trades (Rapoport, Erev and Zwick (1995); Reynolds (2000); Cason and Reynolds (2005)).

3.1 Setup

The experiments were conducted at the Missouri Social Science Experimental Laboratory

(MISSEL) from April to October 2016. The lab is designed exclusively for computer ex-

periments in social science. Each desk was partitioned for privacy, and each participant was

identified by an ID number. The experimental program was written in z-Tree, a C++-based

software package from the University of Zurich (Fischbacher (2007)). All game actions and

results were recorded on a central host computer.

A total of 62 subjects participated in the experiments over four days. Each day before

the experiments, the subjects practiced unrecorded games as sellers and buyers that would not

affect their scores. Operationally, the subjects were divided into two groups, with each taking

turns as a seller or a buyer. To exclude reputation formation or potential coordination with

the same opponent, subjects were randomly matched with a different subject across groups

in every game. Only individual payoffs earned during the day were converted into monetary

compensation using a linear exchange rate: 30 points equaled 1 U.S. dollar. Each day lasted

approximately two hours, and subjects received an average of $29.6 per day.

Subjects played a simplified model with one stochastic deadline (M = 1,n∗1 = 3) out of

six periods (N = 6). An environment for each game was characterized by its unique set of

three bargaining primitives {α1, σ , δ}. To identify the effect of deadline credibility, I let

the credibility α1 vary from α1 ∈ {0.1m, 0.05}, (m ∈ {0,1, · · · ,10}) within each session of

a given (σ ,δ ) ∈ {(1,0.98),(2,0.98),(1,0.7)}.31 Seven to eight sessions with different bar-

gaining primitives (σ ,δ ) were conducted each day, and each subject participated in multiple

sessions as either a seller or a buyer (see Table B.1 in the Supplementary Material for the as-

signment of players across bargaining environments). Table 1A tabulates the 1,161 bargaining

observations across various environments.

Before each bargaining, both parties were informed of their role (seller or buyer) and the

environment. A private value for a buyer was drawn from the shape parameter σ ∈ {1,2},

generating a uniformly distributed or an upward skewed distribution of the private value.32 The

31α1 = 0.05 is to examine the effect of a small positive credibility, guided by a simulation in Figure 3.
32Both players were informed of σ through the pie chart illustrating the probability distribution across intervals
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price history was displayed at the beginning of each period at n ≥ 2 to ensure participants’

perfect memory. To make their decisions as consistent as possible, subjects were encouraged

to record all their actions and results on paper after completing each bargaining.

3.2 Descriptive Summary

Table 1B summarizes descriptive statistics on prices, agreements, and bargaining outcomes.33

In line with the model, most prices decline over the periods; there is little commitment to a sin-

gle price or price increases. Out of 2,407 pairwise prices (i.e., Pn and Pn+1 (n= 1, · · · ,5)), 2,050

(85.2%) are discounted, 270 (11.2%) are maintained, and 87 (3.6%) are increased. Moreover,

as predicted by the simulation in Figure 2a, increases in deadline credibility disproportion-

ately raise the agreement rate at the stochastic deadline (n = 3) rather than at the deterministic

deadline (n = 6) (see Table B.3 in the Supplementary Material for a formal test).

In contrast to the model’s predictions, however, three systematic departures are worth not-

ing. First, opening prices under no stochastic deadline (α1 = 0) (mean 63.7) are higher than the

model prediction (mean 44.3), consistent with Rapoport, Erev and Zwick (1995) and Reynolds

(2000), and in some cases even exceed the theoretical ultimatum price (mean 52.2), as docu-

mented in Rapoport, Erev and Zwick (1995).

Second, despite higher opening prices P1, the first-period agreement rate (23.6%) is, on

average, substantially higher than predicted by the model (14.5%), suggesting that some buyers

concede immediately. The simulation predicts a first-period agreement rate of about 12–15%

across credibility levels, while it consistently around or above 20% in the experiment.

Third, the average share of a buyer’s surplus among bargainings that reach agreement is

34.8%—systematically lower than 50% across all credibility levels, indicating a persistent

seller advantage.34 This share is even lower than the model’s corresponding ex ante surplus

share for buyers (44.4%), consistent with buyers’ apparent early concessions in the opening

period. Taken together, these behavioral departures from the theoretical benchmarks are for-

mally tested and discussed in Section 4.

of the buyer’s private value v.
33The simulated value (opening price, agreement rate, and buyer’s share of surplus) is calculated according to

formulas (6)–(8), weighted by samples from each environment in the experiment.
34Table 1B documents an alternative proxy, a buyer surplus share including separations: the share of the sum of

all buyer surpluses in the sum of the efficiencies of all bargainings. This proxy records a similar level of 35.7%,
which is again lower than its simulation counterpart of 44.8%.
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Table 1: Descriptive Statistics

sessions

credibility level zero 89
small 405

medium 280
high 296

perfect 91
1,161

sellers' actions

 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 average

credibility level zero 67.1 61.7 53.5 48.2 44.4 32.5 54.2
small 64.5 56.9 47.8 42.3 36.7 28.4 51.0

medium 61.9 53.8 41.7 39.0 35.6 28.7 51.3
high 60.6 53.1 38.9 32.1 30.4 23.5 51.0

perfect 59.4 53.9 36.0 - - - 52.2
62.7 55.4 44.0 42.2 37.7 28.9 51.5

buyers' actions

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 total

credibility level zero 21.3% 2.3% 13.5% 5.6% 14.6% 21.3% 78.6%
small 19.8% 9.6% 14.3% 8.4% 9.4% 14.8% 76.3%

medium 24.3% 15.7% 23.9% 6.4% 3.9% 3.2% 77.5%
high 24.3% 12.8% 29.7% 0.7% 1.0% 1.7% 70.2%

perfect 38.5% 9.9% 33.0% - - - 81.4%
23.6% 11.4% 22.0% 5.1% 5.6% 8.0% 75.7%

separations
excluded

separations
included

separations
excluded

separations
included

credibility level       zero 3.69 21.3% 43.0 19.9 15.2 33.9% 35.4%
small 3.29 23.7% 42.8 20.2 15.2 34.6% 35.5%

medium 2.48 22.5% 46.4 20.1 15.2 32.8% 32.9%
high 2.24 29.7% 43.6 23.2 16.0 34.9% 36.6%

perfect 1.93 18.7% 56.2 29.5 23.7 41.7% 42.2%
2.76 24.4% 44.9 21.6 16.1 34.8% 35.7%

27

Table 1B: Descriptive statistics

total

Table 1A: Bargainings across environments

σ = 1, δ = 0.98

35
159
115

27
σ = 1, δ = 0.7

85

σ = 2, δ = 0.98

27
110
80

136

115
39

463
25

373325

10081

sum

average

average

average

outcomes

price 

agreement rate

sepa-

ration
efficiency

buyer's surplusdelay

to

agree-

ment

level share

Note: Deadline credibility is zero when α1 = 0, small when α1 ∈ {0.05,0.1,0.2,0.3}, medium when α1 ∈
{0.4,0.5,0.6}, large when α1 ∈ {0.7,0.8,0.9}, and perfect when α1 = 1. “–” indicates a value not available
by design (α1 = 1). Delay to agreement is defined within bargainings that reach agreement. Separations consist
of cases at both n = 3 and n = 6. Efficiency is the sum of both players’ payoffs. Buyer’s surplus share (exclud-
ing separations) is an averaged share of a buyer’s surplus within bargainings that reach agreement. Buyer surplus
share (separations included) is the share of the sum of all buyer surpluses in the sum of trade efficiencies, including
separations.

3.3 Testing the Efficiency Benefit

Using the laboratory data and guided by theoretical insights from the model, I empirically

assess testable predictions about three effects of an imperfectly credible deadline. Given my

random assignment of deadline credibility, I estimate the effect of deadline credibility on bar-

gaining outcomes (e.g., prices, efficiencies, and payoffs) with ordinary least square (OLS) re-
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gressions that control for bargaining primitives (δ , σ ). Although the separation risk is random

by design, each bargaining sample is not independent. To address serial correlation, individ-

ual player fixed effects for sellers and buyers are included separately. In addition, to isolate

learning effects from bargaining experience, I control for the order of games and session fixed

effects within each day. To account for potential intratemporal correlation, standard errors are

clustered at the session-by-day level. These econometric safeguards are maintained throughout

the analysis.

Discounted offers: As a key mechanism for restoring trade efficiency, the model predicts that

non-zero credibility of the stochastic deadline may induce price discounts. Lemma 1 shows

that opening prices can fall under some imperfect credibility. Figure 2b shows a case under the

base parameter (δ = 0.98,σ = 1) where prices in the first half of the horizon (n ∈ {1,2,3})

decrease for most imperfect credibility (α1 ∈ (0,0.789]) relative to the conventional deadline

regime (α1 = 0). Moreover, reflecting the expansion of deadline effects with deadline credi-

bility, prices in the second half of the horizon (n ∈ {4,5,6}) monotonically decrease, because

a remaining buyer after the stochastic deadline is more likely to have a lower private value

than under α1 = 0 (see Figure 2b). Guided by this general pricing behavior, I test whether a

stochastic deadline system induces sellers to make price concessions, as stated below.

Effect 1 [Discounted offers] In contrast to the conventional deadline regime, a stochastic

deadline reduces a price (Lemma 1).

Table 2 reports the estimated sensitivity of a periodic price to deadline credibility. Columns

(1)–(3) show significantly negative sensitivity of pricing at n∈{1,2,3}. (−0.076,−0.076,−0.174;

all p < 0.1%) Note that this decrease is most pronounced in the stochastic deadline period

(n = 3), which is reminiscent of ultimatum game experiments (see Section 4 for further discus-

sion). After the stochastic deadline, the price schedule declines monotonically with deadline

credibility at period n ∈ {4,5} (−0.153, p < 0.1% in (4) and −0.095, p < 5% in (5)), consis-

tent with the model. At n = 6, the point estimate is negative but not statistically significant in

(6) (−0.059, p = 27.1%), plausibly due to the limited number of remaining buyers.

Efficiency and distribution: If higher deadline credibility suppresses prices (Effect 1), does

it also enhance trade efficiency? Which party benefits from the stochastic deadline? Based on

Proposition 2, this subsection tests the sensitivity of efficiency and buyer surplus to deadline
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Table 2: Deadline Credibility and Price Schedules

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
(1) (2) (3) (4) (5) (6)

deadline credibility α1 -0.076 **** -0.076 **** -0.174 **** -0.153 **** -0.095 ** -0.059
(0.013) (0.015) (0.017) (0.040) (0.044) (0.053)

value σ 0.067 **** 0.069 **** 0.083 **** 0.073 ** 0.100 ** 0.102 ***
(0.015) (0.014) (0.016) (0.033) -(0.042) (0.039)

patience δ 0.163 *** 0.212 **** 0.169 *** 0.261 **** 0.199 * 0.153 *
(0.050) (0.051) (0.053) (0.063) (0.105) (0.090)

fixed effects of sellers and buyers Yes Yes Yes Yes Yes Yes
bargaining experience Yes Yes Yes Yes Yes Yes

observations 1161 887 755 316 257 192

price level (normalized to unity)
(OLS)

Note: Bargaining experience controls for within-day order of games and session fixed effects. Parentheses contain
standard errors, clustered by day-by-session. ****, ***, **, and * indicate p < 0.1%, p < 1%, p < 5%, and
p < 10%, respectively.

credibility.

Effect 2 [Restored trade efficiency] In contrast to the conventional deadline regime, a

stochastic deadline improves trade efficiency (Proposition 2).

Effect 3 [Advantage for the responder] In contrast to the conventional deadline regime, a

stochastic deadline yields a higher level and a larger distributional share of the buyer’s surplus

(Proposition 2).

To test Effect 2, column (1) of Table 3 regresses efficiency U (or the sum of players’ realized

payoffs) and finds that the coefficient on credibility α1 is significantly positive (0.057, p <

10%). This result indicates that, on average, higher deadline credibility enhances efficiency.

Specifically, imposing a stochastic deadline with a 10 p.p. larger termination hazard increases

efficiency by 0.57 p.p. The effect is substantially greater than the model’s prediction: a 0.18 p.p.

average benefit predicted for all stochastic deadline cases (α1 > 0) relative to the deterministic

deadline (α1 = 0).35

The result suggests that an expected downside of a stochastic deadline—separation costs—

does not increase to the extent that overall trade efficiency is harmed. Guided by this inference,

35The simulated benefits relative to deterministic deadline cases (α1 = 0) are averaged across bargaining envi-
ronments (α1 > 0), with each environment weighted by its number of observations.
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I examine whether higher deadline credibility induces separations relative to the case without

a stochastic deadline. In column (2), I estimate the effect of higher deadline credibility on a

binary outcome of separation using a logit model. Perhaps surprisingly, higher credibility does

not significantly increase the separation probability (0.286, p = 20.7%). While the positive

point estimate suggests that higher credibility may raise the separation probability, the effect is

not large enough to materially harm efficiency.36

Table 3: Deadline Credibility and Bargaining Outcomes

 separations
excluded

separations
included

separations
excluded

separations
included

OLS OLS OLS OLS
(1) (2) (3) (4) (5) (6)

deadline credibility α1 0.057 * 0.286 0.064 **** 0.035 ** 0.031 0.040 *
(0.032) (0.227) (0.018) (0.017) (0.020) (0.014)

preference σ 0.376 **** -1.34 **** 0.200 **** 0.103 *** -0.015 0.005
(0.067) (0.240) (0.050) (0.036) (0.072) (0.017)

patience δ 0.217 **** 0.511 0.037 ** 0.076 **** 0.001 -0.100
(0.017) (0.778) (0.016) (0.012) (0.020) (0.065)

fixed effects of sellers and buyers Yes Yes Yes Yes Yes -
bargaining experience Yes Yes Yes Yes Yes -

observations 1,161 1,120 861 1,161 861 138

dependent variables

logitOLS

buyer's surplus
level (0–1) share (0–1)separation

probability
(0–1)

efficiency
(0–1)

Note: All outcomes are normalized to unity. In (2), 41 samples are dropped after including fixed effects. In (5),
the buyer’s surplus share (separations excluded) is an average share of the buyer’s surplus within bargainings that
reach agreement. In (6), the buyer surplus share (separations included) is the ratio of total buyer surpluses to total
trade efficiency, including separations. The unit of observation is a day-by-environment, and the specification
includes day fixed effects. Bargaining experience controls for within-day order of games and session fixed effects.
Parentheses contain standard errors, clustered by day-by-session in (1)–(5) and by day in (6). ****, ***, **, and
* indicate p < 0.1%, p < 1%, p < 5%, and p < 10%, respectively.

I then examine whether higher deadline credibility contributes to buyers’ surplus. In columns

(3)–(6), I examine the sensitivity of the level and share of buyer surplus, reported with and with-

out separations, respectively.37 Since the model relates overall trade efficiency to these mea-

sures (see Proposition 2), we should expect columns (3)–(6) to display similar patterns—which

is indeed the case. Columns (3)–(6) suggest that a 10 p.p. increase in deadline credibility sig-

nificantly increases the expected buyer surplus by 0.64 p.p. (level, p < 0.1%), 0.35 p.p. (level,

p < 5%), 0.31 p.p. (share, p = 12%), and 0.40 p.p.(share, p < 10%), respectively. Positive es-

36A weakly significant positive estimate is consistent with the simulation in Figure 4a.
37Since a distribution share of separated pairs cannot be computed, (6) adopts the environment-by-day level as

the unit of analysis and includes day fixed effects.
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timates of these α1 terms indicate that a stochastic deadline can also serve as a countermeasure

to monopoly power.

Overall, Tables 2 and 3 suggest more direct and robust evidence of the effectiveness (Ef-

fects 2–4) of the stochastic deadline than predicted by the benchmark model: higher deadline

credibility reduces the seller’s price, improves trade efficiency without strongly inducing sep-

arations, and strengthens buyers’ bargaining power.38 This result suggests that a stochastic

deadline is an affordable catalyst, albeit not a costless empty threat. In the following, I elabo-

rate on the interpretation of these stronger experimental effects.

4 Discussion

As shown in Section 3, the experiments demonstrate more robust effects of the stochastic dead-

line than the model predicts. Higher credibility of the stochastic deadline suppresses offered

prices, strengthens the buyer’s bargaining power, and improves efficiency without a notice-

able increase in separations. I next examine the sources of these deviations from the model to

discuss how the results can be interpreted.

To identify the deviations from the model, I first categorize sellers’ pricing and buyers’

decisions using the following criteria. A periodic price in a given environment is classified as

reasonable if it lies within ±20% of the theoretical price, and as demanding (or cooperative) if

it exceeds (or falls below) the theoretical benchmark by more than 20%. The buyer’s acceptance

or rejection in period n is reasonable if she follows a cutoff rule—accepting if v ≥ Cn and

rejecting if v < Cn—where Cn is the cutoff computed for each environment (see Section 2.2).

By contrast, accepting when v < Cn is classified as cooperative, and rejecting when v ≥Cn is

classified as demanding.39

Table 4A documents the benchmark distribution of pricing attitudes under the conventional

deadline regime (α1 = 0). Most prices (59%)—especially opening prices (74%)—are catego-

rized as demanding, as in Reynolds (2000), and in some cases even exceed the static monopoly

benchmark, consistent with Rapoport, Erev and Zwick (1995). By contrast, relatively few pric-

38Given the nonlinear implications of the model, where the costs and benefits of the stochastic deadline are
comparable, I formally test for nonlinearity using a quadratic specification. However, the qualitative implications
remain largely unchanged relative to the simpler linear model. The results are available upon request.

39Acceptance in the final period cannot be classified as cooperative by design, because accepting with v < C6
yields a negative payoff, given that C6 = P6.
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Table 4: Baseline Assessment of Behavioral Attitudes under a Credible Deadline (α1 = 0)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

reasonable 25% 16% 28% 43% 47% 21% 29%
demanding 74% 79% 62% 41% 41% 37% 59%
cooperative 1.1% 5.7% 10% 16% 12% 42% 12%

sample 89 70 68 56 51 38 372

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

reasonable (accept) 1.1% 0.0% 5.9% 1.8% 7.8% 50% 7.8%
reasonable (reject) 79% 97% 82% 86% 63% 47% 79%

cooperative (accept) 20% 2.9% 12% 7.1% 18% - 11%
demanding (reject) 0.0% 0.0% 0.0% 5.4% 12% 2.6% 2.7%

sample 89 70 68 56 51 38 372

Seller's pricing
period

total

Table 4A: distribution of pricing (α1 = 0)

period

Table 4B: distribution of decisions (α1 = 0)

Buyer's decision

total

Note: For definitions of behavioral attitudes (sellers: reasonable, demanding, cooperative; buyers: reasonable
(accept), reasonable (reject), cooperative (accept), demanding (reject)), see the main text. “–” indicates a value
unavailable by design (see footnote 39). NA denotes an unavailable estimate due to a lack of variation under fixed
effects.

ing decisions—12%—are cooperative. However, the proportion of cooperative pricing gradu-

ally increases over time, from 1% in period n = 1 to 12% in period n = 5, and peaks at 42%

in the final period (n = 6). This last-minute discounting appears to be novel in the context

of multi-period trading experiments with one-sided incomplete information,40 yet it is remi-

niscent of ultimatum games (discussed below). On the buyer side, a much larger proportion

of decisions are cooperative (11%) than demanding (2.7%). This marked asymmetry in atti-

tudes between sellers and buyers plausibly contributes to the lower buyer surplus share in the

experiment than in the model (35.7% in the experiment versus 44.8% in the model, including

separations).

Following the evaluation criteria, I analyze the sensitivity of pricing and acceptance be-

havior to deadline credibility, relative to the conventional deadline regime (α1 = 0) (see Table

B.4 in the Supplementary Material). Consistent with Table 2, pricing becomes less demand-

ing, more reasonable, and increasingly cooperative in periods n ∈ {1,2,3}, with the most

40Previous studies—Reynolds (2000) in a six-period setting and Rapoport, Erev and Zwick (1995) in an infinite-
horizon environment—document a puzzling increase in prices near the end. They interpret this pattern in terms of
fairness considerations, but in the opposite direction from my explanation: sellers become less willing to discount
after repeated rejections.
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pronounced changes occurring at the stochastic deadline period (n = 3). Plausibly, lower

prices induce buyers to replace reasonable rejections with reasonable acceptances in periods

n ∈ {1,2,3}, while reducing cooperative acceptances. Since the change in buyers’ attitudes is

closely aligned with sellers’ price discounting, my overall assessment is that higher deadline

credibility corrects sellers’ systematic biases toward demanding prices—especially in opening

prices (Effect 1)—and facilitates reasonable agreements by buyers, thereby improving trade

efficiency (Effect 2) and strengthening buyers’ bargaining power (Effect 3).

Still, an important question remains: why do more sellers become cooperative during the

stochastic deadline period (n = 3) relative to earlier periods (n ∈ {1,2}) as deadline credibility

increases, as documented in Table 2? In the following, I discuss four behavioral mechanisms

relevant in this context: fairness, bounded rationality, ill-updated belief, and risk aversion.

Fairness: The stochastic deadline is reminiscent of canonical ultimatum games embedded

in earlier periods n ∈ {1,2,3}. In ultimatum games, standard rationality predicts that even

extremely selfish offers should be accepted by responders. However, hundreds of experiments

show a well-known behavioral regularity: an average proposer offers between 30% and 50%

of the money, and more than half of the opponents reject the proposal with a share below

20% (Camerer (2003)).41 The literature emphasizes proposers’ fairness concerns as a central

explanation (e.g., Fehr and Schmidt (1999); Bolton and Ockenfels (2000)). Observing the

similarity in the protocol not only at the final deadline (n = 6) but also at the intermediate

deadline (n = 3), one can interpret sellers’ systematic discounting before the deadline threat as

a manifestation of fairness, as the probability of continuation approaches zero.42

Consistently, in the final period (n = 6) of the baseline deadline regime (α1 = 0), similarly

high cooperative pricing (42%) is observed, even though static ultimatum behavior would be

optimal at that stage. However, as the stochastic deadline becomes credible, the same behav-

ioral force in ultimatum games is activated earlier, in the intermediate period (n= 3). The effect

of deadline-induced fairness appears to be greater in the stochastic deadline regime because the

separation risk affects many more remaining pairs in n = 3 than in n = 6: in the experiments,

41Alternatively, the experimental literature refers to fairness as inequality aversion, equity, or reciprocity. In
this paper, I use the term fairness throughout.

42To rationalize the failure of the Coase conjecture in the laboratory, Fanning (2022) builds a behavioral model
with a preference for fairness along the lines of Fehr and Schmidt (1999) and proposes disadvantageous pricing
(i.e., monopolists prefer not to offer unfavorable competitive prices) as an explanation. In contrast, my use of
fairness has the opposite meaning for sellers (i.e., monopolists do not prefer to set prices that are too demanding).
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65% of all games (755 pairs) remain in n = 3, whereas only 16% (192 pairs) reach n = 6 due to

earlier agreements and separations. Faced with a stochastic deadline, this behavioral tendency

leads sellers to concede rather than strategically exploit the buyer’s concession.

Bounded rationality: Given the similarity to ultimatum games, a fairness-based explanation

is appealing. However, fairness concerns may be mitigated under asymmetric information:

a higher price may be unfair to lower-type buyers but fair to higher-type buyers, and rejec-

tion in this setting does not necessarily reflect an aversion to inequality (Güth, Ockenfels and

Ritzberger (1995)).43 In addition, when the roles of seller and buyer alternate, social norms of

fairness may be diluted. If subjects rotate through the advantaged seller position, they would

feel less guilt in exercising this privilege.

Beyond fairness, another compelling explanation is a form of bounded rationality, follow-

ing Selten (1978), who argued that multi-period environments hinder fully rational decision-

making. In the six-period experiment, subjects’ ability to correctly infer opponents’ best re-

sponses through backward induction appears limited. Consistently, most participants spend

very little time on each decision—about 5 to 10 seconds, especially in later games within each

day. Because computing a perfect Bayesian equilibrium path under a stochastic deadline would

plausibly require substantially more time, subjects instead appear to rely on heuristic rules of

thumb. Their attention is directed primarily toward intuitive perceptions of separation losses.

As a result, sellers fail to exploit the stochastic deadline strategically, suggesting that greater

deadline credibility monotonically reduces their bargaining power.

Ill-updated beliefs: The previous two biases limit monopoly power. Alternatively, sellers

may fail to update their Bayesian beliefs, as reflected in Kn∗1 (see “Homemade Priors” by

Camerer and Weigelt (1988)).44 The experimental protocol imposes common initial beliefs

about private values across subjects, but beliefs may be substantially revised downward for

various reasons in the stochastic deadline period. Although I cannot definitively rule out the

possibility that Kn∗1 is substantially low, I consider this explanation unlikely to be the primary

driver of price concessions. Suppose that Kn∗1 were substantially low to account for the observed

43Comparing dictator and ultimatum games, Forsythe et al. (1994) show that fairness alone cannot account for
discounted offers in ultimatum games.

44To formally trace this reasoning, recall that the sellers’ pricing is formulated as Pn = AnKn, where An is a
period-specific monopoly power and Kn is (the sellers’ inference of) the upper bound of their opponents’ types.
Therefore, lower Pn∗1

results from either lower bargaining power An∗1
or lower Kn∗1

.
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price drop. Because beliefs are driven by previous cutoffs (i.e., Kn∗1 =Cn∗1−1), this would imply

that, as α1 increases, a correspondingly larger fraction of negotiations in n∈{1,2} should reach

agreement. This implication is inconsistent with the observed distribution of agreements; the

increase in agreements in the pre-stochastic deadline period n∈ {1,2} with deadline credibility

is much smaller than the increase in agreements in the stochastic deadline period (n = 3).45

Moreover, there is no particular reason to expect beliefs Kn to drop sharply at n = 3 rather than

at n = 4.46

Risk aversion: The model assumes that both parties are risk neutral; subjects’ risk prefer-

ences are neither measured nor controlled in the experiment. Since typical pricing is classified

as demanding, pricing is generally consistent with risk-seeking behavior among sellers. Since

buyers’ decisions are more cooperative than demanding, this buying behavior is consistent with

risk-aversion among buyers. If the same person could be potentially both risk-seeking as a seller

and risk-averse as a buyer in different roles, individual risk preferences may explain the results.

To partially mitigate this concern, recall that the estimation allows the inclusion of individual

fixed effects as seller or buyer, so that all the sensitivity to deadline credibility is interpreted as

within-person by role, divorced from idiosyncratic components of individual decision making.

However, these time-invariant behavioral fixed effects cannot explain the seller’s changing at-

titude within the game: from demanding prices in the opening periods to cooperative prices at

the stochastic deadline.

Therefore, I view the seller’s price discounting before the stochastic deadline as consistent

with a discontinuous manifestation of the seller’s risk aversion in the face of separation risk.

Put differently, risk aversion is activated at the “time bomb” as the possibility of the next pe-

riod approaches zero. This also complements my earlier explanation that fairness is salient at

the stochastic deadline, suggesting that a deadline has a unique capacity to induce behavioral

biases. I conclude that fairness, bounded rationality, and changing risk attitudes are intertwined

in the face of a stochastic deadline, but their identification remains challenging.

45See Table 1 for the change in agreement rate as α1 increases. Rigorously, the multinomial logit sensitivity of
agreement with credibility is 0.57, 0.63, and 1.03 for n∈{1,2,3}, respectively (see Table B.3 in the Supplementary
Material).

46Recall that updating the belief about an opponent’s value induces a striking drop in price from n = 3 to n = 4.
The remaining buyers in period n = 4 who reject the offer despite the separation risk faced in period n = 3 credibly
signal that their valuations are low.
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5 Concluding Remarks

Many instances of real-world negotiations drag on until deadlines are reached, often generating

costly breakdowns. Must all deadlines be perfectly credible? Motivated by the disproportionate

clustering of eleventh-hour agreements around deadlines, I propose redesigning conventional

deadline structures by embedding an earlier stochastic deadline to restore ex ante trade effi-

ciency.

By enriching a seller–buyer bargaining model with a non-fatal stochastic deadline at an

intermediate period, I demonstrate theoretically that imperfectly credible stochastic deadlines

can improve ex ante trade efficiency. Using a laboratory experiment, I provide proof of concept

for this mechanism. The results suggest effects that are even stronger than predicted by the

model, possibly because earlier agreements are facilitated by sellers’ price discounting in the

face of the stochastic deadline. This paper thus offers a new perspective for market designers

seeking to enhance trade efficiency.

Appendix
The Appendix contains the proofs of the main theoretical results. For detailed experimental

settings, auxiliary analyses, and instructions, see the Supplementary Material.

A Proofs

For generality, I allow the model to incorporate M < N stochastic deadlines at period nd (where

d is the order of stochastic deadlines, with d ∈ {1,2, · · · ,M}). As written in the paper, a simple

model with M = 1 is sufficient to capture the model’s insights.

A.1 Proof of Proposition 1 [Equilibrium paths and bargaining powers]

[Proof ] The proof largely follows a backward induction technique by Sobel and Takahashi

(1983) and Fuchs and Skrzypacz (2013). The last period N is an ultimatum game. When
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v > PN , the buyer accepts by setting CN = PN . Then, define

XN ≡
PN

CN
= 1.

The seller’s problem at period n = N is

VN = max
PN

F(KN)−F(CN)

F(KN)︸ ︷︷ ︸
prob. of agreement

PN .

Recall that the state variable Kn is the upper-bound private value of the buyer who is still

negotiating with the monopolist at period n, and Kn+1 = Cn (∀ n ≤ N− 1) holds. Recall that

the cumulative distribution function of private value v is F(v) = vσ . The first-order condition

yields

PN = ANKN , where AN = (σ +1)−
1
σ .

Thereby, the seller’s value function is

VN =
σ

σ +1
PN .

Next, at all periods n ∈ {1, · · · ,N−1}, the buyer’s cutoff Cn must satisfy

Cn−Pn︸ ︷︷ ︸
payoff of agreement today

= ηnδ (Cn−Pn+1)︸ ︷︷ ︸
payoff of agreement tomorrow

, (A.1)

where a risk-adjustment factor ηn is given by

ηn =

1−αd (n = n∗d)

1 (n 6= n∗d)
(∀ d ∈ {1, · · · , M}).

Plugging Pn+1 = An+1Kn+1 = AnCn into (A.1), I obtain the cutoff

Cn = BnPn,

where a buyer’s bargaining power Bn is inversely characterized by

Xn ≡ (Bn)
−1 = 1−ηnδ (1−An+1). (A.2)
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For notational convenience, I use Xn instead of Bn in the Appendix. Given the buyer’s cutoff

strategy characterized by {Cn}, the seller’s problem at period n is

Vn = max
Pn

F(Kn)−F(Cn)

F(Kn)︸ ︷︷ ︸
prob. of agreement

Pn +
F(Cn)

F(Kn)︸ ︷︷ ︸
prob. of rejection

ηnδVn+1. (A.3)

Plugging the inductive hypothesis of Vn+1 =
σ

σ +1
An+1Cn and Cn =

Pn

Xn
into (A.3), the first-

order condition of (A.3) yields Pn = AnKn, where

An = (
Xn

(σ +1)Xn−ηnδσAn+1
)

1
σ Xn = ((σ +1)−σηnδAn+1Bn)

−1
σ /Bn. (A.4)

Thereby, the value function for the monopolist is Vn =
σ

σ +1
Pn.

Analogously, I derive the buyer’s value function Wn by backward induction. Consider αd ∈

(0,1) (∀ d ∈ {1, · · · , M}). In the last period N, the buyer’s value function is

WN =
F(Kn)−F(Cn)

F(Kn)︸ ︷︷ ︸
prob. of agreement

(
∫ KN

CN

f (v)v
F(KN)−F(CN)

dv︸ ︷︷ ︸
expected payoff on agreement

−PN)

= { σ

σ +1
(1−Aσ+1

N )− (1−Aσ
N)AN}︸ ︷︷ ︸

=EN

KN (CN = PN = ANKN).

Then, define

EN ≡
WN

KN
=

σ

σ +1
{1− σ +2

σ +1
AN}.

At any period, n ∈ {1, · · · ,N−1}, an inductive assumption Wn+1 = En+1Kn+1 is imposed such

that

En+1 ≡
Wn+1

Kn+1
=

σ

σ +1
(1− σ +2

σ +1
An+1). (A.5)

The buyer’s problem is given by

Wn =
F(Kn)−F(Cn)

F(Kn)︸ ︷︷ ︸
prob. of agreement

(
∫ Kn

Cn

f (v)v
F(Kn)−F(Cn)

dv︸ ︷︷ ︸
expected payoff on agreement

−Pn)+
F(Cn)

F(Kn)︸ ︷︷ ︸
prob. of rejection

ηnδWn+1. (A.6)
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Plugging Pn = AnKn, Cn =
AnKn

Xn
, and (A.5) into (A.6), one gets

Wn = {
σ

σ +1
((

An

Xn
)σ−1− (

An

Xn
)σ+1)− (1− (

An

Xn
)σ )An +(

An

Xn
)σ+1

ηnδEn+1}︸ ︷︷ ︸
=En

Kn.

{En} is recursively characterized and rearranging it yields

En =
σ

σ +1
{1− (

An

Xn
)σ+1}−{1− (

An

Xn
)σ}An +(

An

Xn
)σ+1

ηnδEn+1

=
σ

σ +1
−An +(

An

Xn
)σ+1{1−ηnδ

σ +1
+

ηnδAn+1

(σ +1)2 } (Insert (A.5))

=
σ

σ +1
(1− σ +2

σ +1
An) (Insert (A.2)).

Therefore, by induction,

En =
σ

σ +1
(1− σ +2

σ +1
An) (A.7)

holds. �

Sensitivity of bargaining powers regarding the time horizon

Figure A.1 shows the simulation of ex ante bargaining powers A1 for the seller and B1 for the

buyer when periods N increases. One can see that A1 (or B1) is monotonically decreasing (or

increasing, respectively) at a diminishing rate.
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Figure A.1: Simulation: Bargaining Power by Bargaining Horizon
Note: Simulated with σ = 1,δ = 0.98 and no stochastic deadlines.

A.2 Proof of Lemma 1 [Seller’s opening price]

[Proof ] A proof consists of Steps 1–4. Recall the first-order condition (F.O.C.) in the main

text,

dP1

dαd
=

dA1

dαd
=

dA1

dAn∗d︸ ︷︷ ︸
(> 0) Step 1

dAn∗d
dαd︸ ︷︷ ︸
Step 2

= 0. (A.8)

Consider the final stochastic deadline d = M. First, I show this F.O.C. in Steps 1–2.

[Step 1] derive A1 as an increasing function of An∗d

I show that initial bargaining power increases with bargaining power in the stochastic deadline

period n∗d . Differentiating A1 with An∗d
, one gets

dA1

dAn∗d

=
n∗d

∏
e=1

dAe−1

dAe
=

dA1

dA2

dA2

dA3
· · ·

dAn∗d−1

dAn∗d

and
dAe

dAe+1
= δ

(
1− (1−Ae+1)δ

σ +1−δ (σ +1−Ae+1)

) 1
σ σ +2−δ (σ +2−Ae+1)

σ +1−δ (σ +1−Ae+1)
> 0.

Therefore,
dA1

dAn∗d

> 0 holds.
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[Step 2] differentiate An∗d
with deadline credibility αd

I decompose
dAn∗d
dαd

using Xn∗d
(Recall (A.2) for a definition of Xn ≡ (Bn)

−1) as follows:

dAn∗d
(Xn∗,αd)

dαd︸ ︷︷ ︸
change in the seller’s bargaining power

=

seller’s response(> 0)︷ ︸︸ ︷
dAn∗d
dXn∗d

buyer’s response (> 0)︷ ︸︸ ︷
dXn∗d
dαd︸ ︷︷ ︸

strategic interaction

+

seller’s response (< 0)︷ ︸︸ ︷
∂An∗d
∂αd︸ ︷︷ ︸

self-competition

(A.9)

Using algebra, each component is computed as

dAn∗d
dXn∗d

= (1+σ)(1− (1−αd)δ )
X

1
σ

n∗d

{1+σ − (1−αd)δ (1+σ −An∗d+1)}
1+σ

σ

dXn∗d
dαd

= (1−An∗d+1)δ

∂An∗d
∂αd

=−An∗d+1Xn∗d
δ

X
1
σ

n∗d

{1+σ − (1−αd)δ (1+σ −An∗d+1)}
1+σ

σ

Plugging these equations into (A.9), and using algebra, the F.O.C. is reduced to

dAn∗d
dαd

= δ

(
(σ +1)(1− (1−αd)δ )− (1−αd)A2

n∗d+1δ −An∗d+1(σ +2)(1− (1−αd)δ )
)

︸ ︷︷ ︸
≡ f (αd)

×g(N,σ ,δ ,αd) = 0,

where g(N,σ ,δ ,αd) is a function of bargaining primitives such that

g(N,σ ,δ ,αd) =
(

1− (1−αd)δ (1−An∗d+1)
) 1

σ︸ ︷︷ ︸
>0

(
1+δ − (1−αd)δ (1+σ −An∗d+1)

)−(σ+1)
σ︸ ︷︷ ︸

>0

.

Solving for f (αd) = 0 yields α̂d , as given in equation (9) of Lemma 1:

α̂d =
δA2

n∗d+1− (1−δ ){(1+σ)− (2+σ)An∗d+1}
δ (1−An∗d+1)(1+σ −An∗d+1)

.
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[Step 3] Parameter conditions for an interior minimizer

Then, I show that α̂d ∈ (0,1). α̂d > 0 requires a sufficiently large discount factor, δ > δ , where

the threshold discount factor δ is given by

δ =
(1+σ)− (2+σ)An∗d+1

(1+σ −An∗d+1)(1−An∗d+1)
. (A.10)

Suppose α̂d ≥ 1. Then, by algebra, An∗d+1 ≥
1+σ

2+σ
must hold. Accordingly, because An∗d+1 <

AN = (1+σ)−
1
σ <

1+σ

2+σ
(∀σ > 0) holds, this is a contradiction. Therefore, α̂d < 1.

[Step 4] Second-order condition (S.O.C.)

To show that α̂d is a global minimizer, I derive a S.O.C. Note that

d2P1

dα2
d
=− E(v)

(σ +1)2
dA1

dAn∗d︸ ︷︷ ︸
independent of αd

d f (αd)

dαd

holds. Because
d f (αd)

dαd
= δ (1−An∗d+1)(1+σ −An∗d+1) > 0 holds, the S.O.C. also holds as

d2P1

dα2
d
< 0. Combining Steps 1–4, the optimal deadline credibility α̂d at the last stochastic

Mth (d = M) deadline is recursively specified by An∗d+1. For other earlier stochastic deadlines

α̂d (d∈ {1, · · · ,M−1}), repeating the argument backward from d = M− 1 to d = 1 specifies

each optimal deadline credibility α̂d . �
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Güth, W., and K. Ritzberger. 1998. “On durable goods monopolies and the Coase-

Conjecture.” Review of Economic Design, 3: 215–236.
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Karagözoğlu, E., and M. Kocher. 2019. “Bargaining under time pressure from deadlines.”

Experimental Economics, 22: 419–440.

Ma, Ching-to Albert, and Michael Manove. 1993. “Bargaining with Deadlines and Imperfect

Player Control.” Econometrica: Journal of the Econometric Society, 1313–1339.

Muthoo, A. 1999. Bargaining Theory with Applications. Cambridge University Press.

39
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